
Information and Software Technology 55 (2013) 1925–1947
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
A formal framework for software product lines q
0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.05.005

q Research partially supported by the Spanish MEC project TIN2009-14312-C02-
01 and TIN2012-36812-C02-01.
⇑ Corresponding author. Tel.: +34 913944527.

E-mail addresses: rasec.andres@gmail.com (C. Andrés), carloscamachoucv@
gmail.com (C. Camacho), llana@ucm.es (L. Llana).
César Andrés, Carlos Camacho, Luis Llana ⇑
Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain
a r t i c l e i n f o

Article history:
Received 24 May 2012
Received in revised form 19 May 2013
Accepted 20 May 2013
Available online 31 May 2013

Keywords:
Formal methods
Software product lines
Feature models
a b s t r a c t

Context: A Software Product Line is a set of software systems that are built from a common set of fea-
tures. These systems are developed in a prescribed way and they can be adapted to fit the needs of cus-
tomers. Feature models specify the properties of the systems that are meaningful to customers.
A semantics that models the feature level has the potential to support the automatic analysis of entire
software product lines.
Objective: The objective of this paper is to define a formal framework for Software Product Lines. This
framework needs to be general enough to provide a formal semantics for existing frameworks like FODA
(Feature Oriented Domain Analysis), but also to be easily adaptable to new problems.
Method: We define an algebraic language, called SPLA, to describe Software Product Lines. We provide
the semantics for the algebra in three different ways. The approach followed to give the semantics is
inspired by the semantics of process algebras. First we define an operational semantics, next a denota-
tional semantics, and finally an axiomatic semantics. We also have defined a representation of the algebra
into propositional logic.
Results: We prove that the three semantics are equivalent. We also show how FODA diagrams can be
automatically translated into SPLA. Furthermore, we have developed our tool, called AT, that implements
the formal framework presented in this paper. This tool uses a SAT-solver to check the satisfiability of an
SPL.
Conclusion: This paper defines a general formal framework for software product lines. We have defined
three different semantics that are equivalent; this means that depending on the context we can choose
the most convenient approach: operational, denotational or axiomatic. The framework is flexible enough
because it is closely related to process algebras. Process algebras are a well-known paradigm for which
many extensions have been defined.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction software. Formal methods [4–9] are useful for this task. A formal
Software Product Lines [1,2], in short SPLs, constitute a para-
digm for which industrial production techniques are adapted and
applied to software development. In contrast to classical tech-
niques, where each company develops its own software product,
SPLs define generic software products, enabling mass customiza-
tion [3]. Generally speaking, using SPLs provide a systematic and
disciplined approach to developing software. It covers all aspects
of the software production cycle and requires expertise in data
management, design, algorithm paradigms, programming lan-
guages, and human–computer interfaces.

When developing SPLs, it is necessary to apply sound engineer-
ing principles in order to obtain economically reliable and efficient
method is a set of mathematical techniques that allows automated
design, specification, development and verification of software sys-
tems. For this process to work properly, a well defined formalism
must exist. There are many formalisms to represent SPLs

[10–13]. We focus on one of the most widely approaches: Feature
models [10,13].

A feature model is a compact representation of all the products
of an SPL in terms of commonality and variability. Generally these
features are related using a tree-like diagram. A variation point is a
place where a decision can be made to determine if none, one, or
more features can be selected to be part of the final product. For
instance, in these models we can represent the following property:

There exists a product with features A and C.

In addition, it is easy to represent constraints over the features
in feature models. For instance, we could represent the following
property:

In any valid product, if feature C is included then features A and B

must also be included.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.05.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.05.005
mailto:rasec.andres@gmail.com
mailto:carloscamachoucv@gmail.com
mailto:carloscamachoucv@gmail.com
mailto:llana@ucm.es
http://dx.doi.org/10.1016/j.infsof.2013.05.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1926 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
Feature Oriented Domain Analysis [10], in short FODA, is a fea-
ture model to represent SPLs. This model allows us to graphically
represent features and their relationships, in order to define prod-
ucts in an SPL. The graphical structure of a FODA model is repre-
sented by a FODA Diagram. A FODA Diagram is essentially an
intuitive and easy to understand graph where there is relevant
information about the features. This diagram has two different ele-
ments: the set of nodes and the set of arcs. The former represents
the features of the SPL. The latter represents the relationships and
the constraints of the SPL. We introduce the basic components of a
FODA diagram in Fig. 1. With these elements we can model com-
plex SPLs.

For instance, let us look at the FODA Diagrams in Fig. 2. The
Examples a and b show two SPLs with possibly two possible fea-
tures A and B. With respect to a, the feature A will appear in all va-
lid products of this SPL, while B is optional. Therefore, the valid set
of products of this FODA Diagram is one product with A and one
product with features A and B. In b both features are mandatory,
i.e. any product generated from this SPL will contain features A

and B.
Example c, represents an SPL with a choose-one operator. There

are three different features: A, B and C in this diagram. Any valid
product of c will contain A and one of these features B or C. The
conjunction operator is shown in d and e. In both examples two
branches leave feature A. On the one hand, the branches in Exam-
ple d are mandatory. This means that there is only one product de-
rived from this diagram: the one that contains features A, B, and C.
On the other hand, one branch in Example e is optional and the
other is mandatory. This means that there are two products de-
rived from this diagram: one with features A and C, and one with
features A, B, and C.

Finally, more complex properties appear in Examples f and g. In
these diagrams there are tree constraints combined with optional
features. In f, there is an exclusion constraint: If B is included in a
product then feature C cannot appear in the same product. In g,
there is a require constraint: If B is included then C must also be
included.

Although FODA Diagrams are very intuitive, sometimes it can be
hard to analyze all the restrictions and the relationships between
Fig. 1. FODA diagram representation.

Fig. 2. Examples of FODA diagrams.
features. In order to make a formal analysis we have to provide a
formal semantics for the diagrams. To obtain a formal semantics
for SPLs, first we need a formal language. In this paper we define
a formal language called SPLA. As we will see in Section 3, all FODA
Diagrams can be automatically translated into SPLA.

After presenting SPLA, we need to introduce the formal seman-
tics of this algebra. There is previous work on formalizing FODA
and feature models [30,22,31–33,23,24] that we briefly review in
the next section. The approach we follow in this paper is inspired
by classical process algebras [4,6,5]. We define three different
semantics for the language. First we introduce an operational
semantics whose computations give the products of an SPL. Next
we define a denotational semantics that is less intuitive but easier
to implement. Finally we have defined an axiomatic semantics. We
prove that all three semantics are equivalent to each other.

In addition to presenting the formal framework, we have devel-
oped a tool called AT. This tool is an implementation of the formal
semantics presented in this paper. Using AT it is possible to check
properties such as:

� Can this SPL produce a valid product?
� How many valid products can we build within this SPL?
� Given an SPL diagram, can we generate an equivalent SPL dia-

gram with fewer restrictions than the first one?

This tool is completely implemented in JAVA. This tool has a
module to check the satisfiability of an SPL diagram. We carry
out some experiment using diagrams obtained from the random
SPL diagram generator Betty. These experiments shows the scala-
bility of AT. We have checked satisfiability of diagrams with 13,000
features; such diagrams are relatively large given the state of the
art.

In this paper we present a syntactic and semantic framework
that formalizes FODA-like diagrams. First we present a syntax with
the basic operators presented in a FODA-like diagram. Next we de-
fine an operational semantics. This semantics is intuitive and it
captures the notions of the operators. After the operational seman-
tics, we give the denotational semantics. This semantics is more
appropriate for obtaining the products of an SPL. We prove that
both semantics are equivalent. We also define an axiomatic seman-
tics. As far as we know, this semantics does not appear in any of the
previous frameworks. We prove that this semantics is sound and
complete with respect to the previous ones. Inspired by recent
works in process algebras, we also give a way to represent the
terms of the algebra into propositional logic. Finally we have
implemented a tool that supports our framework. The tool is split
into two modules. One module deals with the denotational and
axiomatic semantics while the other deals with the representation
into propositional logic. The second module uses SAT-solver to
check the satisfiability of an SPL.

This paper tries to show that SPLs can benefit from the process
algebra community mainly because process algebras have been
studied from many points of view. For instance, there have been
numerous proposals to incorporate non-functional aspects such
as time and probabilities. In particular, we are currently working
in the following aspects. First, we are studying how to introduce,
the notions of costs and time. In this context, it is also important
the order in which products are elaborated, and therefore, se-
quences instead of sets have to be used. Second, we would like
to work with models that indicate the probability of a product. This
can be applied, for example, in software testing, so that we can add
more resources to test the products with higher probabilities.
Moreover, our semantic approach, based on alternative semantics
that are shown to be equivalent, can be used in further extensions
of both the formalism used in this paper and other formalisms of
similar nature.

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1927
The paper is structured as follows. In Section 2 we review differ-
ent formal models used to represent SPLs and compare other alge-
braic approaches with the one presented in this paper. In Section 3
we show the full syntax of our algebra and how any FODA Dia-
gram is translated into the terms of SPLA. In Sections 4–6 the oper-
ational, denotational and the axiomatic semantics (respectively) of
SPLA are presented. Next, in Section 8 we show the applicability of
this approach in a complete study of a video streaming system. In
Section 9 we present some features of our tool AT, that implements
our formal framework. Finally, we conclude this paper in Sec-
tion 10, by presenting some conclusions and presenting possible
lines of future work. In addition to these sections, there is an
Appendix with all the proofs of the results of this paper.
2. Related work

In this section we present the most usual formal frameworks
used to model SPLs. Let us note that formal methods use both a
formal syntax and a formal semantics. The former is used to write
a precise specification of a system. With the latter a precise mean-
ing is given for each description in the language.

Several proposals exist to formally describe SPLs. We have clas-
sified these formal frameworks into two categories. On the one
hand, there are proposals that adapt well-known formal frame-
works, like transition systems [14–21], to represent SPLs. On the
other hand, there are proposals that give a semantics to originally
informal frameworks dealing with SPL, such as Feature Models
[22–24].

Next we are going to discuss some frameworks that are in the
first category. First we describe frameworks [14–18] that deal with
adaptations of transition systems. The most widely used model is
the Modal Transition System, in short MTS. An MTS is an extension
of a Labelled Transition System. In MTSs, there are two types of tran-
sitions: obligatory and optional, representing transitions that are al-
ways performed and transitions that may be included or discarded
respectively. Furthermore, they present different notions of confor-
mance between sets of products. Let us note that the original MTS
models did not have the capability to define constraints between
features. This problem was overcome with the Extended Modal
Transition Systems [15] and by an associated set of logical formu-
lae [19,21]. There are other studies that have been able to extend
the functionality of MTSs. In particular, the authors in [16] define
the Modal I/O Automata to represent the behavior of SPLs. Finally,
it is worth mentioning another approach that models SPLs based
on Petri Nets [25].

There are other frameworks that follow an algebraic approach
[26–28]. In mathematical terms an algebra consists of a set of sym-
bols denoting values of some type, and operations on the values. In
[26,27] the authors define the SPLs as idempotent semirings
where the values are the features. The denotational semantics pre-
sented in this paper is closely related to this model. Gruler et al.
[28] present an algebra based on the classical CCS [4] process alge-
bra called PL-CCS. This framework is also closely related to ours.
Later we describe how our approach relates to theirs. Finally, in
[29] SPLs are represented as logical expressions.

With regards to the second category, we can mention the fol-
lowing [30,22,31–33,23,24]. In these frameworks authors provide
a semantics for existing feature models [34,10,35,36] such as FODA
and its extension RSEB. Benavides et al. [23] make an automated
analysis of feature models. In [22] the author uses the model de-
fined in [29] to model FODA. In [30] and its extension [32] the
authors define a semantics for FODA based on what they call a tree
feature diagram. [24] deserves special mention since the authors
present a general framework where they can define semantics
for all graph-like diagrams like FODA. The authors in [33] translate
a feature diagram into propositional logic. In this way they can ver-
ify the consistency of models of at least 10,000 features.

In our framework, we present a process algebra to represent
SPLs. In this sense our approach is a new formalism to represent
SPLs, so it lies in the first category. One of the main objectives of
our proposal is to define a general framework that can be used to
provide FODA, or other graph-like diagrams, with a formal semantics
that removes any ambiguity or lack of precision as in [32,24]. There-
fore our approach also lies in the second category. The approach gi-
ven by our semantics is similar to the one in [28], but our intention
has not been to extend an existing process algebra but to define an
algebra to represent graph-like diagrams with cross tree constraints,
like FODA. In this sense our approach is simpler and the semantics is
also simpler. In particular, we do not need the fixed point theory be-
cause there is no recursion in the graph-like diagrams we study.
However, it would have been possible to include a recursion-like
operator. Since our semantics is based on traces, it is likely that we
can define a complete partial order in our semantics so that all the
operators are continuous. The algebraic approach in [26,27] is simi-
lar to our denotational semantics. They present a semiring with two
operators that correspond to our choose-one and conjunction opera-
tors, and two constants that correspond to our U andnil constants.
They present neither an operational nor an axiomatic semantics. Let
us note that one advantage of our approach is that it is based on the
well-known formalism of process algebras. This formalism is very
flexible and many extensions of process algebras have been studied
to incorporate non-functional features like time and probabilities.
we anticipate that this will allow us to incorporate new characteris-
tics in the future (see Section 10).

To conclude this section we would like to mention that SAT-
solvers have been used recently in the context of process algebras
[37–39].

3. FODA algebra

In this section we present the syntax of our algebra and how
FODA Diagrams are translated into this algebra. First, in sub section
3.1 we define the syntax of the algebra and we explain the intuitive
meaning of the operators. Next, in Section 3.2 we introduce the
translation of a FODA Diagram into our syntax.

3.1. Syntax of FODA

The syntax concerns the principles and rules for constructing
terms. We define the language SPLA by means of an Extended
BNF expression. In order to define the syntax, we need to fix the
set of features. From now on F denotes a finite set of features
and A, B, C, etc. denote isolated features.

In the syntax of the language there are two sets of operators. On
the one hand there are main operators, such as � _ �; � ^ �;A; �;
A; �;A) B in �;A;B in �, that directly correspond to relationships
in FODA Diagrams. On the other hand, we have auxiliary operators,
such as nil;U, �nA, �) A, which we need to define the semantics
of the language.

Definition 1. A software product line is a term generated by the
following Extended BNF-like expression:

P ::¼ UjniljA; PjA; Pj
P _ Q jP ^ Q jA;B in Pj
A) B in PjP n AjP) A

where A;B 2 F . We denote the set of terms of this algebra by
SPLA.

In order to avoid writing too many parentheses in the terms, we
are going to assume left-associativity in binary operators and the

1928 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
following precedence in the operators (from higher to lower
priority): A; P;A; P; P _ Q ; P ^ Q ;A;B in P;A) B in P;A) B in

P; P n A, and P) A. We show (Proposition 2) that the binary opera-
tors are commutative and associative. As a result, the choose-one
operator (� _ �) and the conjunction operator (� ^ �) are n-ary opera-
tors instead of just binary operators.

The Extended BNF in Definition 1 says that a term of SPLA is a
sequence of operators and features. An SPLA term represents sets
of products. We introduce the formal definition of products of an
SPL expressed in SPLA in Section 4. Basically, a product is a set
of features that can be derived from an SPLA term. Next we explain
the meaning of each operator by using some examples.

There are two terminal symbols in the language, nil and U, we
need them to define the semantics of the language. Let us note that
the products of a term in SPLA will be computed following some
rules. The computation will finish when no further steps are al-
lowed. This fact is represented by the nil symbol. We will intro-
duce rules to compute a product, with this computation finishing
when no further steps are required, a situation represented by
nil During the computation of an SPLA term, we have to represent
the situation in which a valid product of the term has been com-
puted. This fact is represented by the U symbol.

The operators A;P and A; P add the feature A to any product
that can be obtained from P. The operator A;P indicates that A
is mandatory while A; P indicates that A is optional. There are
two binary operators: P _ Q and P ^ Q. The first one represents
the choose-one operator while the second one represents the
conjunction operator.

Example 1. The term A;B; U represents an SPL with two valid
products. We have a product with only the feature A and another
product with the features A and B. This is because feature B is
optional in this case.
Fig. 3. Mapping from FO
The term A; U _ ðB; U _ C; UÞ has three valid products with one
feature in each. The first has feature A, the second has feature B and
the third has feature C.

We will show that _ is commutative and associative so we
could rewrite the previous term without parentheses:
A; U _ B; U _ C; U. Therefore, this operator can be seen as choosing
1 feature from n options.

The term A; ðB; U ^ C; UÞ represents a mandatory relationship;
and we will see that this term has only one product with three
features: A, B, and C. As well as the choose-one operator, we will
show that the ^ operator is commutative and associative. So we
can consider this an n-ary operator.

The constraints are easily represented in SPLA. The operator
A) BinP represents the require constraint in FODA. The operator
A; B in P represents the exclusion constraint in FODA.

Example 2. The term A) B in A; U has only one valid product
with the features A and B.

Let us consider P ¼ A; ðB; U _ C; UÞ. This term has two valid
products: The first one has the features A and B, while the second
one has the features A and C.

If we add to the previous term the following constraint
A; BinP, then this new term has only one product with the
features A and C.

The operator P) A is necessary to define the behavior of the
A) BinP operator: When we compute the products of the term
A) B in P, we have to take into account whether product A has
been produced or not. In the case it has been produced, we have
to annotate that we need to produce B in the future. The operator
P) B is used for this purpose. The same happens with the operator
DA diagram to SPLA.

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1929
PnB. When we compute the products of A; B in P, if the feature A
is computed at some point, we annotate that B must not be in-
cluded. The operator PnB indicates that product B is forbidden.
3.2. Translation: from FODA to SPLA

The matching table used to translate FODA diagrams to SPLA

syntax is presented in Fig. 3. Any FODA Diagram can be translated
into SPLA by using the rules in this figure. The translation from
FODA into SPLA is made in three steps:

1. First we make the translation of the diagram without taking
into consideration any kind of restrictions.

2. Next we codify the require restrictions. The order in which these
relations appear may be relevant. In order to overcome this
problem, we introduce all the restrictions that are in the transi-
tive closure of the original diagram: If the require constraints

and are in the diagram, we also intro-
duce the require constraint . Proposition 9 proves
that, if the set of constraints are closed under transitivity then
the order in which they are chosen is not important. Let us
remark that this closure can be computed in Oðn3Þ with the
Floyd–Warshall algorithm, with n being the number of involved
features.

3. Finally we codify the exclude constraints. In this case Proposi-
tion 4 proves that the order in which the exclude constraints
are chosen is not important.

This translation is correct because of Propositions 9 and 4. These
propositions cannot be included here because they need the equiv-
alence relation that will be introduced in Section 4 (Definition 6).
Furthermore, their proof is easier after the results about the deno-
tational semantics in Section 5.
Fig. 4. Examples of translation from FODA diagrams into SPLA grammar.
In order to add clarity, Fig. 3 only considers choose-one dia-
grams with two choices. However, we can represent also n-ary
choose-one diagrams because, as we have already said, the _ oper-
ator in SPLA is commutative and associative (Proposition 2).

Example 3. The translation of the FODA Diagram in Fig. 2 by using
the mapping rules of Fig. 3 is presented in Fig. 4.
4. Operational semantics

So far, we only have a syntax to express the SPLs in SPLA, but
for a formal study we need a semantics. In this section we define a
labeled transition system for any term P 2 SPLA. The transitions
are annotated with the set F [fUg, with F being the set of fea-
tures and U R F . In particular, if A 2 F , the transition P!A Q
means that there is a product of P that contains the feature A.
The transitions of the form P!U nil mean that a product has been
produced. The formal operational semantic rules of the algebra are
presented in Fig. 5.

Definition 2. Let P, Q 2 SPLA and a 2 F [fUg. There is a transition
from P to Q labeled with the symbol a, denoted by P!a Q , if it can
be deduced from the rules in Fig. 5.

Before giving any properties of this semantics let us justify the
rules in Fig. 5. We will define the products of an SPL from the set of
traces obtained from the defined transitions.

First we have the rule [tick]. The intuitive meaning of this rule
is that we have reached a point where a product of the SPL has
been computed. Let us note that nil has no transitions, this means
that nil does not have any valid products.

Rules [feat], [ofeat1], and [ofeat2] deal directly with the com-
putation of features. Rule [ofeat2] means that we have a valid
product without considering an optional feature, in other words,
this rule is the one that establishes the difference between an op-
tional and a mandatory feature. Feature A is optional in P because
P!A P1 and P!U nil. In this sense, the transition P!U nil indicates
not only that P has already computed a valid product, but also it
indicates that if P can compute any other features, these additional
features are optional.

Rules [cho1] and [cho2] deal with the choose-one operator.
These rules indicate that the computation of P _ Q must choose be-
tween the features in P or the features in Q.

Rules [con1], [con2], and [con3] deal with the conjunction oper-
ator. The main rules are [con1] and [con2]. These rules are sym-
metrical to each other. They indicate that any product of P ^ Q
must have the features of P and Q. Rule [con3] indicates that both
members have to agree in order to deliver a product.

Rules [req1], [req2], and [req3] deal with the require constraint.
Rule [req1] indicate that A) B in P behaves like P as long as fea-
ture A has not been computed. Rule [req2] indicates that B is man-
datory once A has been computed. Finally [req3] is necessary for
Lemma 1.

Rules [excl1] to [excl4] deal with the exclusion constraint. Rule
[excl1] indicates that A; B in P behaves like P as long as P does
not compute feature A or B. Rule [excl2] indicates that once P pro-
duces A, feature B must be forbidden. Rule [excl3] indicates just the
opposite: when feature B is computed, then A must be forbidden.
This rule might be surprising, but there is no reason to forbid
A; BinP to compute feature B. So if A; B in P computes feature
B then feature A must be forbidden. Otherwise the exclusion con-
straint would not have been fulfilled.

Rules [forb1] and [forb2] deal with the auxiliary operator PnA
that forbids the computation of feature A. Let us note that there
is no rule that computes A. This means that if feature A is computed
by P, the computation is blocked and no products can be produced.

Fig. 5. Rules defining the operational semantics of SPLA.

1930 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
Rules [mand1], [mand2], and [mand3] deal with the auxiliary
operator P) A. Rule [mand1] indicates that feature A must be
computed before delivering a product. Rules [mand2] and [mand3]
indicates that P) A behaves like P. We need two rules in this case
because when feature A is computed it is no longer necessary to
continue considering this feature as mandatory and so the operator
can be removed from the term.

We can see the operational semantics of a term as a computa-
tional tree (see the examples in Figs. 6–8). The root is the term itself
and the branches are labeled with features. The branches of the
tree represent the products of the term. We obtain a valid product
when we reach a node that has an outgoing arc labeled with U. At
Fig. 6. Application of the operational semantic rules 1/3.

Fig. 7. Application of the operational semantic rules 2/3.
this point no more features can be obtained in the corresponding
branch. This is what the following lemma establishes.

Lemma 1. Let P, Q 2 SPLA, if P!U Q then Q = nil.

Once we have defined the operational semantics of the algebra,
we can define the traces of an SPL, and from these traces we obtain
its products.

Fig. 8. Application of the operational semantic rules 3/3.

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1931
Definition 3. A trace is a sequence s 2 F�. The empty trace is
denoted by �. Let s1 and s2 be traces, we denote the concatenation
of s1 and s2 by s1 � s2. Let A 2 F and let s be a trace, we say that A is
in the trace s, written A 2 s, iff there exist traces s1 and s2 such that
s = s1 � A � s2.

We can extend the transitions in Definition 2 to traces. Let P, Q,
R 2 SPLA, we inductively define the transitions P!s R as follows:

�
� P! P.
� If P!A Q and Q!s R, then P!A�s R.

Only traces ending with the symbol U can be considered as
products. Therefore, in order to obtain the products of an SPL,
we need to take its successful traces: the traces that end with the
U symbol. Let us note that the U symbol is not a feature, so we
do not include it in the trace.

Definition 4. Let P 2 SPLA and s 2 F�; s is a successful trace of P,
written s 2 tr(P), iff P!s Q!U nil.

The order in which the features are produced cannot be repre-
sented in FODA. For this reason, different traces can define the
same product. For instance, the product obtained from the trace
AB is the same as the one represented by the trace BA. Thus in order
to get the products of an SPL we have to consider sets that result
from traces.

Definition 5. Let s be a trace. The set induced by the trace, written
[s], is the set obtained from the elements of the trace without
considering their position in the trace.

Let P 2 SPLA, we define the products of P, written prod(P), as
prod(P) = {[s]js 2 tr(P)}.
Example 4. Now let us consider the SPLA term P ¼ A;

ðB; U ^ C; UÞ. The possible computations of P are:
P!A B; U ^ C; U!U nil

P!A B; U ^ C; U!B U ^ C; U!U nil

P!A B; U ^ C; U!B U ^ C; U!C U ^U!U nil

P!A B; U ^ C; U!C B; U ^U!U nil

P!A B; U ^ C; U!C B; U ^U!B U ^U!U nil

Then tr(P) = {A, AB, ABC, AC, ACB}. Therefore prod(P) = {[A], [A-
B], [ABC], [AC]} since [ABC] = [ACB]

In order to illustrate the operational semantics, we will review
the examples presented in Fig. 4, giving their semantics.

Example 5. The semantics of the terms in Fig. 4 have been split in
Figs. 6–8.

First let us discuss the differences between examples a and b. In
example a feature B is optional while in b it is mandatory. This is
reflected in example b by the fact that there is a branch
corresponding to the transition B; U!U nil. This branch is not in
Example a.

Now let us focus on Examples c and d. They show the difference
between the conjunction operator and the choose-one operator. In
the choose-one operator the member that is not needed for the
computation disappears, while in the conjunction operator the other
member remains. As a result Example c has the traces AB and AC,
giving two different products [AB] and [AC]. In contrast, the traces
in example d are ABC and ACB, giving just the product [ABC].

Once we have defined the products of an SPL, it is the time to
define an equivalence relation based on products.

Definition 6. Let P, Q 2 SPLA. We say that P and Q are equivalent,
written P � Q if the products derived from both SPLs are the same:
prod(P) = prod(Q).

Since the relation � is based on set equality it is also an equiv-
alence relation. In Section 5 we will see that it is also a congruence.

Proposition 1. Let P, Q, R 2 SPLA. The following properties hold:

� P � P.
� If P � Q then Q � P.
� If P � Q and Q � R then P � R.

Next we present some basic properties of the algebra, such as
the commutativity and associativity of the binary operators. These
properties are important since they allow us to extend the binary
operators to n-ary operators.

Proposition 2. Let P, Q, R 2 SPLA. The following properties hold:

Commutativity P _ Q � Q _ P and P ^ Q � Q ^ P.
Associativity P _ (Q _ R) � (P _ Q) _ R and P ^ (Q ^ R) �

(P ^ Q) ^ R.

5. Denotational semantics

The denotational semantics is more abstract than the opera-
tional one, since it does not rely on computation steps. In this sec-
tion we provide a denotational semantics for SPLA. In order to
define this denotational semantics, the first thing to do is to estab-
lish the mathematical domain where the syntactical objects of SPLA
will be represented.

As we have noted in Section 3, the semantics of any SPLA

expression is given by its set of products, and each product can
be characterized by its features. So the mathematical domain we

1932 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
need is PðPðFÞÞ,1 remembering that F is the set of features. The
next step is to define a semantic operator for any of the syntactical
operators in SPLA. This is done in the following definition.

Definition 7. Let P;Q 2 PðPðFÞÞ be two sets of products and let
A;B 2 F be two features. We define the following operators:

� snilt = ;
� sUt ¼ f;g
� sA; �t : PðPðFÞÞ# PðPðFÞÞ as
1 If X
2
nil

operato
sA; �tðPÞ ¼ ffAg [pjp 2 Pg
� sA; �t : PðPðFÞÞ# PðPðFÞÞ as
sA; �tðPÞ ¼ f;g [ffAg [pjp 2 Pg
� s � _ � t : PðPðFÞÞ � PðPðFÞÞ# PðPðFÞÞ as
s � _ � tðP;QÞ ¼ P [Q
� s � ^ � t : PðPðFÞÞ � PðPðFÞÞ# PðPðFÞÞ as
s � ^ � tðP;QÞ ¼ fp [qjp 2 P; q 2 Qg
� sA) B in � t : PðPðFÞÞ# PðPðFÞÞ as
sA) B in � tðPÞ ¼
fpjp 2 P;A R pg[
fp [fBgjp 2 P;A 2 pg
� sA;B in � t : PðPðFÞÞ# PðPðFÞÞ as
sA;B in � tðPÞ ¼
fpjp 2 P;A R pg[
fpjp 2 P;B R pg
� s�) At : PðPðFÞÞ# PðPðFÞÞ as
s�) AtðPÞ ¼ fp [fAgjp 2 Pg
� s � nAt : PðPðFÞÞ# PðPðFÞÞ as
s � nAtðPÞ ¼ fpjp 2 P;A R pg
With these operators over sets of products, we can define the
denotational semantics of any SPLA expression, which is defined
inductively in the usual way.

Definition 8. The denotational semantics of SPLA is the function
s � t : SPLA! PðPðFÞÞ inductively defined as follows: for any n-ary
operator
op 2 fnil;U;A; �;A; �; � _ �; � ^ �;A) B in �;A;B in �; �) A; � n Ag2:

sopðP1; . . . PnÞt ¼ soptðsP1t; . . . ; sPntÞ
Fig. 9. Application of the denotational semantic rules.

Example 6. In order to illustrate the denotational semantics, we
apply it to the examples presented in Fig. 4. The results are pre-
sented in Fig. 9.

The rest of this section is devoted to proving that the set of
products computed by the operational semantics coincides with
the one computed by the denotational semantics. In order to do
it, first we need some auxiliary results that relate the operational
semantics with the denotational operators from Definition 7.

The first result deals with the termination of a trace. The prod-
ucts of an SPL are computed from the bottom up. That means that
the first product computed by the denotational semantics is the
product with no features. Let us note that f;g ¼ prodðUÞ ¼ sUt,
but ; = prod(nil) = snilt.

Lemma 2. Let us consider P 2 SPLA, if P!U nil then ; 2 sPt.
is a set, PðXÞ denotes the power set of X.
and U are 0-ary operators; A; �;A; � A) Bin � ,A; Bin � , �) A, � nA are 1-ary

rs; � _ � and � ^ � are 2-ary operators.
Next we will present a lemma for each operator of the syntax.
Each of these lemmas indicates that the corresponding semantic
operator is well defined in Definition 7. These results will be
needed in the inductive case of Theorem 1.

Lemma 3. Let P, P0 2 SPLA, and A;B 2 F , then
1. prod(A;P) = sA;t(prod(P))
2. prodðA; PÞ ¼ sA; tðprodðPÞÞ
3. prod(P _ P0) = s _ t(prod(P), prod(P0)).
4. prod(P ^ P0) = s ^ t(prod(P), prod(P0)).
5. prod(P) A) = s �) At(prod(P)).
6. prod(PnA) = s � nAt(prod(P)).
7. prod(A) BinP) = sA) Bin � t(prod(P)).
8. prod(A; BinP) = sA; Bin � t(prod(P)).

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1933
Now we have the result we were looking for: The denotational
semantics and the operational semantics are equivalent.

Theorem 1. Let P 2 SPLA, then prod(P) = sPt.

An immediate result from the previous theorem is that the
equivalence relation � is a congruence.

Corollary 1. The equivalence relation � is a congruence: For any
n-ary operator op, and P1, . . . Pn, Q1, . . . Qn 2 SPLA such that
P1 � Q1, . . . , Pn � Qn, we have

opðP1; . . . ; PnÞ � opðQ 1; . . . ;Q nÞ
5.1. Correctness of the translation

The translation procedure in Section 3.2 does not impose an or-
der among the restrictions. This means that one diagram can be
translated in different syntactical terms in SPLA. In this section
we are going to prove that all that different terms are equivalent
indeed. In the translation, we first codify the require constraints
from the FODA diagram. When all the require constraints are codi-
fied, then the exclude constraints are codified. First, let us prove the
property that indicates the order in which the require constraints
are chosen. Let us recall that when making the translation from
FODA to SPLA we consider the closure of the require constraints.

First, let us prove the property that indicates the order in which
the require constraints are chosen. Let us recall that when making
the translation from FODA to SPLA we are going to consider the clo-
sure of the require constraints.

Definition 9. Let P 2 SPLA be term, we say that is closed with
respect the require constraints if has the following form:

A1) B1 in A2) B2 in � � �An) Bn in Q

where Q has no restrictions and the set of restrictions is closed by
transitivity, that is, if there are features A;B;C 2 F and 1 6 i,j 6 n
such that A = Ai, B = Bi = Aj and C = Bj then there is 1 6 k 6 n such
that A = Ak and C = Bk.
Proposition 3. Let P 2 SPLA be a closed term with respect to the
require constraints. Let us consider Q0 2 SPLA by reordering the
require constraints in P. Under these conditions P � Q.

We also have to prove that the order in which the exclude con-
straints are chosen is irrelevant. This is because two exclude con-
strains in FODA are always interchangeable.

Proposition 4. Let P 2 SPLA be a term and A;B;C;D 2 F , then
A; BinC; DinP � C; D inA; BinP.
Fig. 10. Equations to remove require and mandatory operators.
5.2. Full abstraction

Finally in this Section, we show that the model is fully abstract:
given any set S of products, there is a SPLA term whose semantics
is exactly the set S. Moreover, this term can be constructed by
using a subset of the grammar: nil;U, the prefix operator, and
the choice operator.

Definition 10. Let P 2 SPLA, we say that it is a basic term if it can
be generated by the following grammar

P ::¼UjniljA; PjP _ Q

We denote the set of basic terms as SPLAb.

The result that we are looking for is the following.
Theorem 2. Let F be a finite set of features and let A 2 PðPðFÞÞ,
there exists P 2 SPLAb such that prod(P) = A.

This result indicates also an important practical consequence.
Let us imagine any other operator that could be added to the syn-
tax of SPLA. This result indicates that this operator can be derived
from the operators in SPLAb. Even the operators in SPLA can be
rewritten in terms of the operators in SPLAb. In fact, in the next
section we show how we can remove the non-basic operators from
any SPLA term.

This result establishes also an interesting theoretical conse-
quence. Since the denotational semantics is fully abstract, it is iso-
morphic to the initial model with respect to the equivalence
relation. That is, the set of products with the operators of the deno-
tational semantics is isomorphic to the algebra of terms: SPLA/�.

6. Axiomatic semantics

In this section we give an axiomatic semantics for SPLA, pre-
senting sound and complete axioms for the language. As usual,
soundness means that the equalities deduced from the axiom sys-
tem are indeed correct: P = E Q implies P � Q. The completeness
means that all the identities can be deduced from the axiom sys-
tem, that is P � Q implies P = E Q.

Definition 11. Let P, Q 2 SPLA. We say that we deduce the
equivalence of P and Q if P = E Q can be deduced from the set of
equations in Figs. 10–13.

To prove the soundness it is enough to show that the operators
are congruent (Theorem 1) and that each axiom is correct.

Proposition 5. Let A;B 2 F be two features, and P and Q be terms of
SPLA. The equations in Figs. 10–13 are correct.

To prove the completeness we need the concept of normal
forms. In order to define the normal forms we prove that some
operators are derived from the basic operators. These basic opera-
tors are the base ones (nil and U), the prefix operator (A;P),
and the choose-one operator (P _ Q). The following example shows
how some operators can be removed.

Example 7. Let us consider the following SPL P ¼ A; U ^ B; U. It is
easy to compute its successful traces which are {AB,BA}, so
prod(P) = {[AB]}. This SPL has the same products as A;B; U.

Fig. 11. Equations to remove exclusion, and forbid operators.

Fig. 12. Axioms to remove the conjunction operator.

Fig. 13. Axioms for basic operators and optional features.

3 The vocabulary of an ordinary term has not been formally defined. Definition 12
could easily be extended to the set of features appearing in the syntax of a term.

1934 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
Indeed, by applying the indicated axioms we have the following
deduction

A; U ^ B; U ¼ E ½CON1�
A; ðU ^ B; UÞ ¼ E ½CON2�
A; ðB; U ^UÞ ¼ E ½CON1�
A;B; ðU ^UÞ ¼ E ½CON5�

A;B; U

The set of axioms in Figs. 10–12, plus the axiom [PRE 2] in
Fig. 13 allow the non-basic operators (Definition 10) to be removed
from any P 2 SPLA. The idea is to prove that Q 2 SPLAb exists such
that P � Q.

Let us suppose that we have a term P 2 SPLA that contains a
non-basic operator. Then we can find Q 2 SPLA where either, the
non-basic operator has disappeared or it is deeper in the syntactic
tree of Q. Then iterating this process we can make all non-basic
operators disappear. Then we have the theorem we are looking for.

Theorem 3. Let P 2 SPLA, there exists Q 2 SPLAb such that P = EQ.

Since we know how to remove the non-basic operators of an
SPLA term, we focus on proving the completeness restricted to ba-
sic terms. To do so, we define are our normal forms, and then we
prove that any basic term can be transformed to a normal form
by using the basic axioms in Fig. 13.

In order to give the formal definitions of normal forms we pro-
vide auxiliary definitions. First we assume that there is an order
relation 6 #F � F that must be isomorphic to the natural num-
bers in case F is infinite. Next, we need the vocabulary of a basic
SPLA term, that is the set of features appearing in the expression.

Definition 12. Let P, Q 2 SPLAb be two basic SPLA terms. We
define the vocabulary as the function voc : SPLA b ! PðFÞ defined
inductively as:

� vocðnilÞ ¼ vocðUÞ ¼ ;
� voc(A;P) = {A} [voc(P)
� voc(P _ Q) = voc(P) [voc(Q)

Before giving the definition of normal forms, we define a sim-
pler case that is the case of pre-normal forms.

Definition 13. A basic SPLA term P 2 SPLAb is in pre-normal form,
written P 2 SPLApre, iff it has one of the following forms.

1. nil;U, or
2. There exists n > 0; fA1; . . . ;Ang#F , and there exist

P1, . . . Pn 2 SPLApre with Pi – nil for 1 6 i 6 n and {A1, . . . An} \
voc(Pj) = ; for 1 6 j 6 n and either
P ¼ ðA1; P1Þ _ � � � ðAn; PnÞ
or
P ¼ ðA1; P1Þ _ � � � ðAn; PnÞ _U
In this case we say that the features {A1, . . . , An} are at the top level
of P.

Next we present an auxiliary lemma that will be used in Prop-
osition 8. This lemma establishes that if a feature appears in the
vocabulary of a pre-normal form then it appears in at least one
product of the pre-normal form. Let us note that this result is not
true3 in ordinary terms because of the restrictions that might appear
in the terms.

Lemma 4. Let P 2 SPLApre, then

vocðPÞ ¼ fAjA 2 p; p 2 prodðPÞg

The next lemma establishes that if a feature A appears in a pre-
normal form P, the normal form can be transformed into another
equivalent normal form Q so that A is at the top level of the syntax
tree of Q.

Fig. 15. Transformation to normal form 2/3.

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1935
Lemma 5. Let P 2 SPLApre and let A 2 voc(P). Then there is
Q 2 SPLApre such that P � Q and A 2 {A1, . . . , An} according to condi-
tion 2 of Definition 13 applied to Q.

The next proposition establishes the first result we need to
prove the completeness: Any term can be transformed into an
equivalent pre-normal form. The result is restricted to basic terms
but, because of Theorem 3, it can be extended to any ordinary term.

Proposition 6. Let P 2 SPLAb, there exists a pre-normal form
Q 2 SPLApre such that P = EQ.

The problem with pre-normal forms is that there are syntacti-
cally different expressions that are equivalent, as the following
example shows.

Example 8. Let us consider the following SPLAb expressions:

P ¼ ðA;C; UÞ _ B; U

Q ¼ ðC;A; UÞ _ B; U

Both expressions are in pre-normal form and both are equivalent.
The way to obtain a unique normal form for any SPLAb

expression is to use the above mentioned order among features.
Let us assume A < B < C; in this case we say that P is in normal form
while Q is not.

Normal forms are a particular case of pre-normal forms that
overcome this problem. They make use of the order required be-
tween features.

Definition 14. Let us consider P 2 SPLApre. We will say that P is a
normal form, written P 2 SPLAnf iff P ¼ nil; P ¼U or if the sets
{A1, . . . , An} and {P1, . . . , Pn} in Definition 13.2 satisfy:

� Ai < Aj for 1 6 i < j 6 n.
� Ai < B for any B 2 voc(Pj) for 1 6 i 6 j 6 n.
Fig. 16. Transformation to normal form 3/3.
Example 9. Figs. 14–16 show the normal forms corresponding to
the examples in Fig. 4 assuming that A < B < C. The examples a, b,
and c are not included due to the fact that they are already normal
forms.

Now we have our first result. Any expression can be trans-
formed into a normal form.

Proposition 7. Let P 2 SPLApre. Then there exists a normal form
Q 2 SPLAnf such that P = E Q.

The next result shows that two normal forms that are semanti-
cally equivalent, are also identical at the lexical level.
Fig. 14. Transformation to normal form 1/3.
Proposition 8. Let P, Q 2 SPLAnf. If they are semantically equivalent,
P � Q, then they are syntactically identical P = Q.

Finally, we can prove the main result of this section: The deduc-
tive system is sound and complete.

Theorem 4. Let us consider P,Q 2 SPLA. Then P � Q if and only if
P = EQ.
7. Checking satisfiability

In this section we present a mechanism to check the satisfiabil-
ity of a syntactical term, that is, whether there is a product satisfy-
ing all restrictions imposed by the term.

Definition 15. Let P 2 SPLA. We say that P is satisfiable iff
prod(P) – ;.

Checking the satisfiability of any P 2 SPLA could be done
by computing the products P, by using the rules defining the

1936 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
denotational semantics. Once we have this set we could check
whether it is empty or not. However, computing all products
may be not feasible. So, in this section we present an alternative
that uses a SAT-solver. From any P 2 SPLA we build a propositional
formula /(P) such that P is satisfiable if and only if there exists a
valuation v such that v�/(P). In building such a formula we keep
track of the order in which features are produced. Any feature A

is associated with a set of boolean variables: Ak for k 2 N. The
integer associated with the feature is used to keep track of the
order in which it has been produced. Therefore, our boolean
variables will have the form Ak where A 2 F and k 2 N.

Before describing how compute the formula associated to a syn-
tactical term, we need some auxiliary definitions. The maxin func-
tion is especially important because it is used to compute the
next index available for a feature in a given formula.

Definition 16. Let u be a propositional formula, we denote the set
of boolean variables appearing in u by vars(u).

Let A 2 F and u be a propositional formula. We define the
function that returns the maximum index of A in the formula u as
follows:

maxinðA;uÞ ¼
k 9l 2 N : Al 2 varsðuÞ;

k ¼maxfljAl 2 varsðuÞg
�1 otherwise

8><
>:

Finally, if l < 0, Al will denote the symbol \.

Lemma 7 is necessary in order to prove the main result of this
section. But in order to prove Lemma 7 we need to complete the
computed formulas in the presence of the choice operator. It is
convenient that the function maxin is same in both members of a
choice operator, this is achieved by the completing of a formula.

Definition 17. Given u1 and u2, we define the completion of u1 up
to u2, written u)u2

1 , as follows:

u1 ^
^

A 2 F ;
l ¼ maxinðA;u2Þ;
k ¼ maxinðA;u1Þ;

0 6 k < l

ð:Al ! :Al�1Þ ^ � � � ^ ð:Akþ1 ! :AkÞ

The first consequence of the previous definition is that u)u2
1 is

stronger than u1: if v 	 u)u2
1 then v�u1. let us note that in the pre-

vious definition, the new variables do not belong to u1. So any val-
uation v such that v�u1 can be extended to a new valuation v0 in
such a way that it only modifies the value of the new variables
and v 0 	 u)u2

1 . It is also important to note that the number of vari-
ables does not increase due to this completion. This is because the
variables that we introduce in u)u2

1 are already in u2. These prop-
erties are expressed in the following lemma.
Lemma 6. Let u1 and u2 be two propositional formulas.

1. Let v be a valuation such that v 	 u)u2
1 , then v�u1.

2. Let v be a valuation such that v�u1. Then there is a valuation v0

such that v 0 	 u)u2
1 and v0(Al) = v(Al) for any feature A and

0 6 l 6maxin(A,u1).

3. Let A be a feature such that there is k 2 N satisfying Ak 2 vars u)u2
1

� �
but Ak R vars(u1), then Ak 2 vars(u2). So maxin A;u)u2

1

� �
¼ maxin

ðA;u2Þ
Definition 18. Let P 2 SPLA, we define its associated propositional
formula, written /(P), as follows:
/ðnilÞ ¼?
/ðUÞ ¼ >

/ðA; PÞ ¼ Alþ1 ^ /ðPÞ where l ¼maxð0;maxinðA;/ðPÞÞÞ

/ðA; PÞ ¼ >
/ðP _ QÞ ¼ /ðPÞ)/ðQÞ _ /ðQÞ)/ðPÞ

/ðP ^ QÞ ¼ /ðPÞ ^ /ðQÞ

/ðA) B in PÞ ¼ ð:Alþ1 ! :AlÞ ^ ð:Bmþ1 ! :BmÞ
^ ðAlþ1 ! Bmþ1Þ ^ /ðPÞ
where l ¼ maxinðA;/ðPÞÞ and m ¼ maxinðB;/ðPÞÞ

/ðA;B in PÞ ¼ ð:Alþ1 ! :AlÞ ^ ð:Bmþ1 ! :BmÞ
^ ð:Alþ1 _ :Bmþ1Þ ^ /ðPÞ
where l ¼ maxinðA;/ðPÞÞ and m ¼ maxinðB;/ðPÞÞ

/ðP) AÞ ¼ Alþ1 ^ /ðPÞ where l ¼maxð0;maxinðA;/ðPÞÞÞ
/ðP n AÞ ¼ :Al ^ /ðPÞ thatwhere l ¼ maxinðA;/ðPÞÞ

Before giving the result that will help us to check the satisfiabil-
ity of any P 2 SPLA, we need a preliminary property of /(P).
Lemma 7. Let P 2 SPLA;A 2 F ;v be a valuation such that v�/(P)
and l 2 N such that v(Al) = 0 and Al 2 vars(/(P)), then v(Ak) = 0 for
k 6 l.

We want to prove that there exists p 2 SPLA if and only if the
formula /(P) is satisfiable. But there are problems in the presence
of restrictions (requires, excludes, mandatory or forbid) inside a
conjunction operator. So the result is restricted to syntactical terms
that do not have restrictions inside the conjunction operator. This
is not a major drawback since the restrictions can be considered to
be external to the other operators.

Definition 19. Let P 2 SPLA, we say that is a safe SPL if there are
no restrictions inside a conjunction operator (^).

The main result of this section is Theorem 5. This Theo-
rem relates the satisfiability of an SPL P and the satisfiability of
its associated formula /(P). This theorem is a direct consequence
of Propositions 9 and 10. Proposition 9 is the left to right implication
of Theorem 5. It is proven by structural induction on P, and an extra
condition is needed to prove the result.

Proposition 9. Let P 2 SPLA be a safe SPL. If p 2 prod(P) then there
is a valuation v such that v�/(P), and A 2 p iff k P 0 and v(Ak) = 1
where k = maxin(A,/(P))

Proposition 10 is the right to left implication of Theorem 5. It is
also proven by structural induction on P. As in the previous case,
an extra condition is needed to prove the result.

Proposition 10. Let P 2 SPLA be a safe SPL. If there is a valuation v
such that v�/(P) then there is a product p 2 prod(P) such that A R p
for any feature A satisfying v(Al) = 0 for all 0 6 lmaxin(A,/(P)).

So, finally we have the result we require.

Theorem 5. Let P 2 SPLA be a safe SPL, then p 2 prod(P) iff there is
a valuation v such that v�/(P).

Finally, in Section 9 we present the results of a tool implement-
ing this result. This tool uses a SAT-solver. Let us note that /(P) is
not a CNF formula. So, in order to check its satisfiability with a SAT-
solver, /(P) has to be converted into CNF.

Fig. 17. Video Streaming Software – FODA representation.

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1937
8. Study of VSS system

In this section we consider the example of a model of a Video
Streaming Software. The FODA Diagram of our Video Streaming
Software is presented in Fig. 17. This system incorporates the fol-
lowing features: VSS, TBR, VCC, 720Kbps, 256Kbps, H.264 and
MPEG.2. The initial feature4 for this SPL is VSS (Video Streaming
Software). Any product of this SPL will need this first feature. Let
us note that each feature has a unique name the definition of which
appears in the domain terminology dictionary of Video Streaming
Software.

Next we present the features, and we indicate their intuitive
meanings and relationships between them. The initial first feature
is VSS. Its related features are: TBR (the Transmission Bit-Rate) and
VCC (the Video Codec) features. There is a mandatory relationship
between them (it is represented by using an arc). This relationship
establishes that this set of features is included in all implementa-
tions of the software where the VSS is included. There are addi-
tional mandatory relationships in the diagram. For instance, the
feature 720Kbps has a relationship with its parent. There are other
features in this system that are included as optional. For instance,
the feature 256Kbps is optional, meaning that this feature may be
(or may not be) included in the final products of the SPL. Let us
note that the inclusion of this feature depends on other relation-
ships that represent constraints. Finally, let us consider the fea-
tures H.264 and MPEG.2. The choose-one operators relates to
them. This means that at least one of this features will be pre-
sented in the final product of the SPL. In this system, there is a
set of rules that denotes some restrictions. For instance, when the
feature MPEG.2 is included, the feature 720Kbps is also included.
Furthermore, when the feature H.264 is selected, the feature
256Kbps must not appear. Let us consider the constraint that re-
lates MPEG.2 with the speed 720Kbps. It is a require constraint,
that is, if the MPEG.2 feature is selected, then the speed of the
TBR must be 720Kbps. Let us note that this constraint is not nec-
essary since 720Kbps is mandatory, we have included it to show
that sometimes FODA allows the inclusion of repetitive (or useless)
information. There is another constraint that focuses on the fea-
tures H.264 and 256Kbps and it is an exclusion constraint meaning
that if the feature H.264 appears then the final product cannot con-
tain 256Kbps. Finally, a valid product of this model is a set of fea-
tures that fulfills all the constraints in the diagram. For instance, let
us consider the following products: pr1 consists of VSS, TBR,
720Kbps, VCC, and H.264, pr2 consists of VSS, TBR, 720Kbps,
VCC, and MPEG.2 and pr3 consists of VSS, TBR, 720Kbps, 256Kbps,
VCC, and H.264. In this case, pr1 and pr2 are valid products of this
model, but pr3 is not a valid product of this model.

In order to present the formal analysis, first we focus on the
translation process. Formally, the complete translation of this model
into our algebra is P1:

P1 :¼ MPEG:2) 720Kbps in

H:264 ;256Kbps in P2

where

P2 :¼ VSS; ðP21 ^ P22Þ
P21 :¼ TBR; ð720Kbps; U ^ 256Kbps; UÞ
P22 :¼ VCC; ðH:264 ; U _ MPEG:2 ; UÞ

We depict the labeled transition system associated with the
term P1 in Fig. 18. In this figure we have skipped the subtrees (1)
and (2) because we did not obtain new products from those sub-
trees. From the tree depicted we obtain the following traces:
4 Sometime called the hard-system of the SPL.
� VSS TBR VCC 720Kbps H.264,
� VSS TBR VCC 720Kbps MPEG.2 720Kbps,
� VSS TBR VCC 720Kbps MPEG.2 256Kbps 720Kbps,
� VSS TBR VCC MPEG.2 720Kbps, and
� VSS TBR VCC MPEG.2 720Kbps 256Kbps.

From those traces we obtain the products:

� {VSS, TBR, VCC, 720Kbps, H.264},
� {VSS, TBR, VCC, 720Kbps, MPEG.2}, and
� {VSS, TBR, VCC, 720Kbps, MPEG.2, 256Kbps}

The denotational semantics for P1 is presented in Fig. 19. Let us
note that the set of products is not modified after applying the last
semantic operator sMPEG.2) 720Kbpsin � t. This means that the
require restriction is not necessary in this case. As expected (see
Theorem 1), the set of products obtained by applying the denota-
tional semantics coincides with the set of products computed with
the operational semantics: prod(P1) = sP1t.

Finally, we present the deduction process induced by the axioms
in Fig. 20. We can observe how the initial expression P1 is trans-
formed until we obtain a pre-normal form (Fig. 20, Eq. (5)):

VSS;TBR;VCC;720Kbps; ðH:264 ; U

_ MPEG:2 ;720Kbps; ð256Kbps; U _UÞÞ

This term is not in normal form for two reasons. First we have not
established an order among the features, instead we can assume the
following ordering: VSS < TBR < VCC < 720Kbps < H.264 < MPEG.2 <
256Kbps. Secondly, the repetition of feature 720Kbps in this term
is not allowed in normal forms. We obtain the normal from by
applying the rules in Eq. (6), and the resulting term is:

VSS;TBR;VCC;720Kbps; ðH:264 ; U _ MPEG:2 ; ð256Kbps; U

_UÞÞ

This is a normal form for the above ordering.
9. The SPLA Tool

In this section we present the SPLA Tool, called AT. The core of
this tool is implemented in JAVA. The tool can be downloaded from
http://simba.fdi.ucm.es/at and its license is GPL v3.5

The tool has modules that will be presented later. In order to
validate them, we generate SPLs using the JAVA BeTTy Feature
Model Generator6 [40]. In BeTTy, the models are generated by set-
ting several input parameters. We have used the following values:
The percentage of constraints was 30%, the probability of a feature
5 More details in http://www.gnu.org/copyleft/gpl.html.
6 Can be downloaded from http://www.isa.us.es/betty/betty-online.

http://simba.fdi.ucm.es/at
http://www.gnu.org/copyleft/gpl.html
http://www.isa.us.es/betty/betty-online

Fig. 18. Labeled transitions system of the video streaming software.

Fig. 19. Denotational semantics of video streaming software.

1938 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
being mandatory was 25%, the probability of a feature being in a
choose-one relation was 50%.

9.1. Satisfiability module

This module computes the satisfiability of an SPL by using the
results in Section 9.1. So it computes the formula associated with
an SPL. Then, by using a SAT-solver, we check the satisfiability of
the formula. Since the module has been developed in JAVA, we
have used the SAT4j.

The experiments were run with a number of different features
ranging from 1000 to 13,500. Fig. 21 shows the time needed to
compute the satisfiability of the SPLs with respect to the number
of features in the model.
9.2. Denotational semantic module

This module computes the products of an SPLA term according
to the semantics presented in this paper.

The experiments were run with a number of different features
ranging from 50 to 300. The results are in Fig. 22. There are three
columns of values in this table: The first one contains the number
of features, the second one contains the time required to com-
plete the experiment, and the last one contain the number of
products needed to give an answer. This number is a lower bound
of the total number of features of the model with the property
that if it is 0 then the model is not satisfiable. A dash in the last
column indicates that we did not obtain any answer after a
15 min timeout.

Fig. 20. Deduction rules applied to the video streaming software.

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1939

Fig. 21. Satisfiability benchmark.

Fig. 22. Denotational benchmark.

1940 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
10. Conclusions and future work

In this paper we presented SPLA as a general framework to rep-
resent SPLs, showing how it can be used to provide FODA diagrams
with a formal semantics. This semantics is fully abstract, and so any
other operator that could be used to define an SPL can be repre-
sented in terms of SPLA. This suggest that the formalism is quite
general and we anticipate that it can be used to express any other
formalism like those mentioned in [41]. In particular, Theorem 2
showed that we work with a fully abstract model. We defined three
different semantics for SPLA: an operational semantics, a denota-
tional semantics and an axiomatic semantics. We proved that the
semantics are equivalent. Besides defining the formal framework,
we have developed a tool to show the applicability of our formal
techniques. The tool is available at http://simba.fdi.ucm.es/at, and
it has been developed under the GPL v3 license.

Since SPLA is based on process algebras, we plan to take advan-
tage of the previous work in this field. In particular, we plan to
study alternative semantics. For instance, in our current semantics
the products are only sets of features. That is, the order in which
the features are computed is not important. There are situations
where this is no longer true. That could be the case if we consider
the cost associated with the production of a product. For instance
producing feature A and then B could have cost 3.00 €, but
producing B and then A might cost 2.00 €. We also plan to include
non-functional aspects to SPLA such as probabilities, that could be
useful in building a user model [42], timed characteristics and, as
we have mentioned, costs.

Another interesting feature that has been deeply studied in the
field of process algebras is the probabilistic information. We think
that this is an interesting feature that should studied in the world
of Software Product Lines. In this way, we can deduce the probabil-
ity of the products. This can be applied, for example, in software
testing, so that we can add more resources to test the products
with higher probabilities.

Acknowledgements

We thank the anonymous reviewers of the paper for the careful
reading and many comments that have notoriously improved the
final version of the paper. We also thank Professor Robert M. Hie-
rons for his valuable comments on the previous revisions of the
paper.

Appendix A. Proofs of the results

Proof Lemma 1. The proof is done by applying induction on the
derivation of P!U Q . We have to observe that in all rules producing
transitions like P!U Q we see that Q is U. h
Proof Lemma 2. We prove this by induction on the length of the
deduction of P!U nil, let us consider that this length is n.

n = 0 In this case we have two cases: P ¼U and P ¼ A; P, in both
cases ; 2 sPt.

n > 1 In this case we have to analyze the rules that yields P!U nil.
These rules are [cho1],[cho2], [con3],[req3], [excl4], and
[forb2].

Rules [cho1] and [cho2]. These rules are symmetric so we can
concentrate in one of them, for
instance [cho1]. In this case
P = P1 _ P2 and P1!

U

nil. By induction
; 2 sP1t, then, by Definition 7, ; 2 sPt.

Rule [con3]. In this case P = P1 ^ P2, P1!
U

nil, and
P2!

U

nil. By induction ; 2 sP1t and
; 2 sP2t. We have the result by Defini-
tion 7.

Rule [req3]. In this case P = A) BinP1 and
P1!

U

nil. By induction ; 2 sP1t. Since
A R ;, by Definition 7, ; 2 sPt.

Rule [excl4]. In this case P = A; BinP1 and
P1!

U

nil. By induction ; 2 sP1t. Since
A R ; and B R ;, by Definition 7, ; 2 sPt.

Rule [req3]. In this case P = P1nA and P1!
U

nil. By
induction ; 2 sP1t. Since A R ;, by Defi-
nition 7, ; 2 sPt. h
Proof (Lemma 3.1). Since the only rule of the operational seman-
tics that can be applied to A;P is [feat], we obtain
tr(A;P) = {A � sjs 2 tr(P)}.

Thus prod(A;P) = {A [pjp 2 prod(P)}, that is the definition of
sA;t(prod(P)) (see Definition 7). h

http://simba.fdi.ucm.es/at

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1941
Proof (Lemma 3.2). The rules that can be applied to A; P are
[ofeat1] and [ofeat2]. So we obtain trðA; PÞ ¼ fUg [fA � sjs 2
trðPÞg. Therefore prodðA; PÞ ¼ f;g [fA [pjp 2 prodðPÞg, that is
the definition of sA; tðprodðPÞÞ (see Definition 7). h
Proof (Lemma 3.3). From rules [cho1] and [cho2] we obtain
tr(P _ P0) = tr(P) [tr(P0). Thus

prodðP _ P0Þ ¼ prodðPÞ [prodðP0Þ ¼ s _ tðprodðPÞ;prodðP0ÞÞ �
Proof (Lemma 3.4). First, let us consider [s] 2 prod(P ^ P0), we will
show that [s] 2 s ^ t(prod(P),prod(P0)) by induction on the length
of s.

s = �. In this case [s] = ; and P ^ P0 !U nil. We can only apply
rule [con3] to obtain this transition. So P!U nil and
P0 !U nil. Thus ; 2 prod(P) and ; 2 prod(P0). Then
[s] = ; 2 s ^ t(prod(P),prod(P0)) by Definition 7.

s = A � s0. In this case P ^ P0 !A P00. We can apply rules [con1] or
[con2] to obtain this transition. [con2] is symmetric to
[con1], so we can concentrate on [con1]. P1 exists so that
P!A P1; P

00 ¼ P1 ^ P0 and [s0] 2 prod(P1 ^ P0). By induction
[s0] 2 s ^ t(prod(P1), prod(P0)), so there are products p1 -
2 prod(P1) and p2 2 prod(P0) such that [s0] = p1 [p2. Let
us consider the trace s1 2 tr(P1) such that [s1] = p1. Then
½s� ¼ fAg [½s0� ¼ fAg [p1 [p2 ¼ ðfAg [½s1�Þ [p2
Finally we obtain the result by Definition 7 since A � s1 2 tr(P) and
p2 2 prod(P0).

Now let us consider p 2 s ^ t(prod(P),prod(P0)). By Definition 7
there are p1 2 prod(P) and p2 2 prod(P0) such that p = p1 [p2. So
there are successful traces s1 2 tr(P) and s2 2 tr(P0) such that
[s1] = p1 and [s2] = p2. We make the proof by induction on the sum
of the lengths of s1 and s2.
len(s1) + len(s2) = 0. So s1 = �,s2 = � and p = ;. In this case we have
the transitions P!U nil and P0 !U nil. By
applying rule [con5], we have the transition
P ^ P0 !U nil. Thus ; 2 prod(P ^ P0).

len(s1) + len(s2) > 0. Let us suppose that s1 ¼ A � s01, (the case
s2 = A � s2 is symmetric). Then, there is a tran-
sition P!A P1 such that s01 is a successful trace
of P1. By Definition 7, s01

� �
[½s2� 2 s ^ t

ðprodðP1Þ;prodðP0ÞÞ. By induction s01
� �
[

½s2� 2 prodðP1 ^ P0Þ. By applying rule [con1],
we obtain the transition P ^ P0 !A P1 ^ P0.
Then fAg [s01

� �
[½s2� 2 prodðP ^ P0Þ. We

have the desired result since
½s1� ¼ fAg [s01

� �
. h
Proof (Lemma 3.5). First we are going to prove

prodðP) AÞ# s�) AtðprodðPÞÞ

So let us consider p 2 prod(P) A). A successful trace s 2 tr(P) A)
exists so that [s] = p. We will show that p 2 s �) At(prod(P)) by
induction on the length of s. Because of Rule [mand1], s – �. Thus
the base case is when s = A (p = {A}). Also because of Rule [mand1]
we have the transition P!U nil, so ; 2 prod(P). Therefore, by Defi-
nition 7 p = {A} [; 2 s �) At(prod(P)).
Now let us consider s = B � s0. If A = B, we have the transition
P) A!A P1 and s0 2 tr(P1). This transition can only be deduced by
Rule [mand2]. Therefore P!A P1 and s 2 tr(P). To obtain the result
it is only necessary to take into account that A 2 [s], so
[s] = {A} [[s]. If A – B, we have the transition P) A!B P1) A and
s0 2 tr(P1) A). This transition can only be deduced by Rule
[mand3]. Therefore P!B P1. By induction we have [s0] 2
s �) At(prod(P1)). Thus, by Definition 7, there is p 2 prod(P1)
such that p1 [{A} = [s0]. There must exist s1 2 tr(P1) such that
[s1] = p1. Now we can observe that B � s1 2 tr(P), thus {B} [p1 -
2 prod(P). Thus
p ¼ ½s� ¼ fBg [½s0� ¼ fBg [p1 [fAg 2 s�) AtðprodðPÞÞ

Now we are going to prove

s�) AtðprodðPÞÞ#prodðP) AÞ

So let us consider p 2 s �) At(prod(P)). Then, by Definition 7, there
is p0 2 prod(P) such that p = p0 [{A}. There exists s 2 tr(P) such that
[s] = p0. We will show that p 2 prod(P) A) by induction on the
length of s.

s = �. In this case we have P!U nil and p0 = ;. Then by applying
Rules [mand1] and [tick], we obtain
P) A!A U!U nil
Then p = p0 [{A} = {A} 2 prod(P) A).
s = A � s0 In this case we have the transition P!A P0 and s0 2 tr(P0).

Then, by Rule [mand2], we obtain P) A!A P0. Therefore
s 2 tr(P) A). To get the result it is enough to take into
account that A 2 [s], so p = p0 [{A} = [s] [{A} = [s].

s = B � s0
with A – B.
In this case we have P!B P0 and s0 2 tr(P0). By Definition 7,
fAg [½s0� 2 s�) AtðprodðP0ÞÞ
By induction we get

0 0
fAg [½s � 2 prodðP) AÞ
There is a trace s00 2 tr(P0) A) such [s00] = {A} [[s0]. By applying
Rule [mand3], P) A!B P0) A. Finally, since B � s00 2 tr(P) A), we
obtain
p ¼ p0 [fAg ¼ ½s� [fAg ¼ fBg [½s0� [fAg ¼ fBg [½s00�
2 prodðP) AÞ �
Proof (Lemma 3.6). First we are going to prove

prodðP n AÞ# s � nAtðprodðPÞÞ

So let us consider p 2 prod(PnA). A successful trace s 2 tr(PnA) ex-
ists such that [s] = p. We will show that p 2 s � nAt(prod(P)) by
induction on the length of s.

s = � In this case we have p = ; and P n A!U nil. The only appli-
cable rule is Rule [forb2], thus P!U nil. By Lemma 2,
; 2 prod(P). By Definition 7 p = ; 2 prod(PnA).

s = B � s0 In this case P n A!B P0 n A and s0 2 tr(P0nA). Since s is suc-
cessful, s0 is also successful. Thus [s0] 2 prod(P0nA). By
induction [s0] 2 s � nAt(P0), therefore [s0] 2 prod(P0) and
A R [s0]. Since the only applicable rule to deduce
P n A!B P0 n A is Rule [forb1], we obtain B � s0 2 tr(P) and
B – A. Therefore [s] 2 tr(P) and A R [s], so, by Definition
7, p = [s] 2 s � nAt(prod(P)).

1942 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
Now we are going to prove

s � nAtðprodðPÞÞ#prodðP n AÞ

So let us consider p 2 s � nAt(prod(P)). By Definition 7 p 2 prod(P)
and A R p. Therefore there exists a successful trace s 2 tr(P) such
that [s] = p. Since A R [s], we obtain that s is a successful trace of
PnA. Therefore p = [s] 2 prod(PnA). h
Proof (Lemma 3.7). First we are going to prove

prodðA) B in PÞ# sA) B in � tðprodðPÞÞ

So let us consider p 2 prod(A) Bin P). There exists a successful
trace s 2 tr(A) BinP) such that [s] = p. We will show that
p 2 sA) Bin � t(prod(P)) by induction on the length of s.

s = �. In this case we have the transition
prodðA) B in PÞ!U nil
The only applicable rule is Rule [req3]. So P!U nil and therefore
; 2 prod(P). So by Definition 7, ; 2 sA) Bin � t(prod(P)).

s = C � s0 with C – A. In this case we have the transition
A) B in P!C P0. If A – C, by Rule [req1],
we obtain P0 = A) BinP1 with P!C P1,
and s0 2 tr(A) BinP1) By induction, we
obtain [s0] 2 sA) Bin � t(prod(P1)). By
Definition 7, we have two cases

A R [s0]. In this case [s0] 2 prod(P1), therefore {C} [[s0] 2 prod(P)
and, since C – A by Definition 7, {C} [[s0] 2 sA) Bin � t
(prod(P))

A 2 [s0]. In this case, by Definition 7, there is a trace s00 2 tr(P1)
such that [s0] = [s00] [{B}. By Definition 7, {C} [[s0] [
{B} 2 sA) B in � t(prod(P)).

s = A � s0. In this case we have the transition
A) B in P!A P0
Since the only applicable rule is Rule [req2], we obtain that there is
P1 2 SPLA such that P!A P1 P0 = P1) B and s0 2 tr(P1) B). By Lem-
ma 5, [s0] 2 s �) Btprod(P1). By Definition 7, there is s00 2 tr(P1)
such that [s0] = [s00] [{B}. Since P!A P1;A � s00 2 trðPÞ. Therefore, by
Definition 7,
p ¼ ½s� ¼ fAg [½s0� ¼ fAg [½s00� [fBg 2 sA

) B in � tðprodðPÞÞ
Now we are going to prove

sA) B in � tðprodðPÞÞ#prodðA) B in PÞ

So let us consider p 2 sA) Bin � t(prod(P)). By Definition 7 there
are two cases:

� A R p. In this case p 2 prod(P), so there is s 2 tr(P) such that
[s] = p. Since A R P, by applying rule [req1], s 2 tr(A) BinP).
� There is p0 2 prod(P) such that A 2 p0 and p = p0 [{B}. Let us

consider s 2 tr(P) such that p0 = [s]. So, there are traces s1 and
s2 such that s = s1 � A � s2 and A R s1. So, there exists P1 and P2

such that P)
s1

P1!
A

P2 and s2 2 tr(P2). Then, by applying rule
[req1],
A) B in P)
s1
A) B in P1!

A
P2) B
Since [s2] 2 prod(P2), by Lemma 5, [s2] [{B} 2 prod(P2) B). Let us
consider s02 2 trðP2) BÞ such that s02

� �
¼ ½s2� [fBg. Therefore

s1 � A � s02 2 trðA) B in PÞ, so
p ¼ p0 [fBg ¼ ½s1� [fAg [½s2� [fBg ¼ ½s1� [fAg [s02
� �

2 prodðA) B in PÞ �
Proof (Lemma 3.8). First we are going to prove

prodðA;B in PÞ# sA;B in � tðprodðPÞÞ

So let us consider p 2 prod(A; BinP). There exists a successful
trace s 2 tr(A; BinP) such that [s] = p. We will show that
p 2 sA; Bin � t(prod(P)) by induction on the length of s.

s = �. In this case we have the transition
prodðA;B in PÞ!U nil
The only applicable rule is Rule [excl4]. So P!U nil and therefore
; 2 prod(P). So by Definition 7, we have ; 2 sA; Bin � t(prod(P)).
s = C � s0 with C – A and C – B. In this case we have the transition

A;B in P!C P0. If A – C, because
of Rule [excl1], we obtain
P0 = A; BinP1 with P!C P1, and
s0 2 tr(A; BinP1). By induction,
we obtain [s0] 2 sA; Bin � t(prod
(P1)). By Definition 7 there are two
cases:

� A R [s0]. In this case [s0] 2 prod(P1). Therefore {C} [[s0] 2
prod(P). Since A R {C} [[s0],
p ¼ fCg [½s0� 2 sA;B in � tðprodðPÞÞ
� B R [s0]. This case is identical to the previous one.

Now let us prove
sA;B in � tðprodðPÞÞ#prodðA;B in PÞ

Let us consider p 2 sA; Bin � t(prod(P)). There are two cases

A R p. In this case p 2 prod(P). So there exists a trace
s 2 tr(P) such that p = [s]. We prove this by induc-
tion on the length of s.

s = �. In this case we have the transition P!U nil. Then by
Rule [excl4], A;B in P!U nil. So p = ; 2 prod
(A; BinP)

s = C � s0. Now we have two possibilities: C = B or C – B. In the
first case we have the transition P!B P1 with
s0 2 tr(P1). By Rule [excl3], we obtain the transition
A;B in P!B P1 n A. On the one hand [s0] 2 prod(P1)
and on the other hand A R [s0] # p, so [s0] 2 s � nAt(P1).
Because of Lemma 6 [s0] 2 prod(P1nA), and then
p ¼ fCg [½s0� ¼ fBg [½s0� 2 prodðA;B in PÞ
If C – B we have the transition P!C P1 with s0 2 tr(P1). By Rule
[excl1], we obtain the transition A;B in P!C A;B in P1. Since
A R [s0], we obtain [s0] 2 sA; Bin � t(prod(P1)) By induction we ob-
tain [s0] 2 prod(A; BinP1), so

0
p ¼ fCg [½s � 2 prodðA;B in PÞ
B R p. This case is similar to the previous one. The only dif-
ference appears in the inductive case when making
the possibilities of C. In this case the possibilities
are: C = A and C – A. The second possibility is like
the second possibility in the previous case. The dif-
ference with respect to the first possibility is that
we need to apply Rule [excl2] instead of Rule
[excl3]. h

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1943
Proof (Theorem 1). We prove this by using structural induction
on P taking into account the previous lemmas. The base cases are
P = nil and P ¼U. In this case it is easy to check that
prod(nil) = snilt = ; and prodðUÞ ¼ sUt ¼ f;g. The induction
corresponds to

P = A;P0 This case corresponds to Lemma 3.1.
P ¼ A; P0 This case corresponds to Lemma 3.2.

P = P1 _ P2 This case corresponds to Lemma 3.3.
P = P1 ^ P2 This case corresponds to Lemma 3.4.

P = A) BinP This case corresponds to Lemma 3.7.
P = A; BinP This case corresponds to Lemma 3.8.

P = PnA This case corresponds to Lemma 3.6.
P = P) A This case corresponds to Lemma 3.5. h
Proof (Corollary 1). We just need to consider the following:

prodðopðP1; . . . ; PnÞÞ ¼ sopðP1; . . . ; PnÞt ¼ soptðsP1t; . . . ; sPntÞ

Since Pi � Qi, sPit = prod(Pi) = prod(Qi) = sQit. Thus

soptðsP1t; . . . ; sPntÞ ¼ soptðsQ 1t; . . . ; sQ ntÞ ¼ sopðQ 1; . . . ;Q nÞt
¼ prodðopðQ 1; . . . ;QnÞÞ �
Proof (Proposition 9). Let us consider A;B;C;D 2 F . If A – D it is
easy to check, by using the definition of the require operator in Def-
inition 7, the following

sA) B in C) D in Pt ¼ sC) D in A) B in Pt

Instead if A = D, because the term is closed under the require con-
straint, again by using the definition of the require operator:

sA) B in C) B in C) A in Pt ¼
sA) B in C) A in C) B in Pt ¼
sC) A in A) B in C) B in Pt ¼
sC) A in C) B in A) B in Pt ¼
sC) B in A) B in C) A in Pt ¼

sC) B in C) A in A) B in Pt

Let us prove in detail

sA) B in C) B in C) A in Pt # sC) B in C) A in A

) B in Pt

the other cases are similar. Any product p 2 sA) BinC)
Bin C) AinPt is built from a product p0 2 sPt. We can distinguish
the following cases:

C 2 p0. Then p = p0 [{A,B} and p 2 sC) BinC) AinA)
Bin Pt.

C R p0,A 2 p0. Then p = p0 [{B} and p 2 sC) BinC) AinA)
BinPt.

C,A R p0. Then p = p0 and p 2 sC) BinC) AinA)
BinPt. h
Proof (Proposition 4). This proposition is immediate by the defini-
tion of the exclude operator in Definition 7. h
Proof (Theorem 2). Since F is finite A is finite, so we can prove the
result by induction on jAj.

jAj = 0 In this case the P = nil.
jAj > 0 Let us consider a product p 2 A and the set A0 = An{p}. By
induction there is P0 2 SPLAb such that prod(P0) = A0. Since
F is finite, p is a finite set of features p = {A1, . . . An}. Then
the term
P ¼ ðA1; . . .An; UÞ _ P0
satisfies the thesis of the result. h
Proof (Proposition 5). In all axioms but [PRE1], [PRE4], [PRE5],
[REQ3], [CON1], [CON4] the transitions of the terms on both sides
of the equation are the same. So in these cases the traces are the
same, so they have the same products.

In the other cases the proof is done by using the denotational
semantics.
[PRE1] A;B;P = EB;A;P
sA;B; Pt ¼ fAg [sB; Pt ¼ fAg [fBg [sPt ¼ fBg [fAg [sPt

¼ fBg [sA; Pt ¼ sB;A; Pt
[PRE4] A;nil = Enil
p 2 sA;nilt() 9p0 2 snilt ^ p ¼ p0 [fAg () False() p

2 snilt
[PRE5] A;A;P = EA;P
sA;A; Pt ¼ fAg [sA; Pt ¼ fAg [fAg [sPt ¼ fAg [sPt

¼ sA; Pt
[REQ3] A) Bin (B;P) = EB;P. In this case it is enough to con-
sider that B 2 sB;Pt. Therefore by the Definition 7,
p 2 sA) B in � tðsB; PtÞ () p 2 sB; Pt
[CON 1] (A;P) ^ Q = EA; (P ^ Q)
p 2 sðA; PÞ ^ Qt()
9p1 2 sA; Pt; p2 2 sQt : p ¼ p1 [p2 ()
9p01 2 sPt; p2 2 sQt : p ¼ p01 [fAg [p2 ()
9p0 2 sP ^ Qt : p ¼ p0 [fAg ()
p 2 sA; ðP ^ QÞt
[CON 4] P ^ nil = Enil
p 2 sP ^ nilt()
9p1 2 sPt; p2 2 snilt : p ¼ p1 [p2 ()
9p1 2 sPt; p2 2 ; : p ¼ p1 [p2 ()
False() p 2 snilt �
Proof (Theorem 3). The proof is made trivially by structural
induction on P. h
Proof Lemma 4. The proof is made by induction on the depth of P.
Let us note that each Pi term appearing in part 2 of Definition 13
cannot be nil. h
Proof (Lemma 5). The proof is made by structural induction of P
by applying Axioms [PRE 1] and [PRE 3]. h
Proof Proposition 6. The proof is made by structural induction of
P and applying Lemma 5. h

1944 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
Proof (Proposition 7). The proof is made by induction on the
depth of the pre-normal form P. The base case is trivial because
P ¼U or P = nil and in these cases P are already in normal form.

The inductive case needs further explanations. The difference
between a normal form and a pre-normal form is the ordering
imposed to the features. Basically there are two cases. The first case
is when P has the following form:

P ¼ . . . _ B; P _ . . . _ A; Q _ . . . with A < B

This term can be transformed into normal form by applying the
commutativity of the choose-one operator (Eq. [CHO 1]).

The second case is when the features that are not properly
ordered appear in the same subterm:

P ¼ . . . _ B; ð. . .A; P . . .Þ _ . . . with A < B

This case can be transformed by applying the Eqs. [PRE 3] and [PRE
1] as indicated below:

B; ððA; PÞ _ QÞ ¼ E ½PRE3�
ðB;A; PÞ _ ðB; QÞ ¼ E ½PRE1�
ðA;B; PÞ _ ðB; QÞ �
Proof (Proposition 8). Let us make an argument by contradiction.
Let us suppose we have P, Q 2 SPLAnf and let us suppose that
they are syntactically different and let us prove that they are not
equivalent, P X Q. The proof is made by induction on the depth
of P and Q. The base case is when both are either U or nil and
the result is trivial. In the inductive case we have the following
possibilities:

(a) P = (A1;P1) _ (Am;Pn),
(b) P ¼ ðA1; P1Þ _ ðAm; PnÞ _U,
(c) Q = (B1;Q1) _ (Bm;Qm), or
(d) Q ¼ ðB1; Q 1Þ _ ðBm; QmÞ _U

If we are in case (a) + (d) we ; 2 prod(P) but R prod(Q), so
P X Q. The case (b) + (c) is symmetric. Let us consider case
(a) + (c), the case (b) + (d) is solved in the same way. If P and Q
are syntactically different then there are two possibilities:

� {A1, . . . , An} – {B1, . . . , Bm}. Let us consider the first difference
among both sets. Let us assume that the first one consist in an
element from the first set that is not in the second set, that is,
there is k 2 {1, . . . , n} such that Ak R {B1 . . . , Bm} and Ai = Bi for
i < k. There are the following possibilities:

k = m + 1 Any occurrence of Ak in Q should be in any of the
sub-trees Qj, j < k. By Lemma 4, that would imply
that Bj 2 p for any product p 2 prod(Q) such that
Ak 2 P. But Bj < Ak, then Bj R voc(Pk). Therefore
there are products p0 2 prod(P) such that Bj R p0.
Therefore P X Q.

Ak < Bk This case is similar to the previous one because
Ak – Bl for l P k and Ak R voc(Ql) for l P k.

Ak > Bk This case is symmetric to the previous one.
� n = m, Ai = Bi for 1 6 i 6 n, and {P1, . . . , Pn} – {Q1, . . . , Qn}. Let

us consider the first k such that Pk – Qk. By structural induc-
tion we have Pk X Qk, let us assume that p 2 prod(Pk) but
p R prod(Qk). It is clear that p [{Ak} 2 prod(P), we are going
to prove that p [{Ak} R prod(Q). On the one hand, since
Ak R voc(Qi) for i P k, by Lemma 4, p [{Ak} R prod(Ai;Qi) for
i P k. On the other hand, since Ai R voc(Pk) for i < k, again by
Lemma 4, Ai R p and thus Ai R p [{Ak} for i < k. Since Ai 2 q
for any q 2 prod(Ai;Qi), p [{Ak} R prod(Ai;Qi) for i < k.
Thus, for any 1 6 i 6 n,p [{Ak} R prod(Ai;Qi) and then
p [{Ak} R prod(Q). Therefore P X Q. h
Proof Theorem 4. We have to prove two implications
� If P = E Q then P � Q. This is a consequence of the soundness of
each rule (Proposition 5).
� If then P � Q then P = E Q. By Proposition 6, there are Ppre,

Qpre 2 SPLApre such that Ppre = E P and Q = EQpre. Now by Proposi-
tion 7, there are Pnf,Qnf 2 SPLAnf such that Pnf = EPpre = E P and
Qnf = E Qpre = E Q. By Proposition 5, we have
Pnf � Ppre � P � Q � Q pre � Q nf
Finally, by Proposition 8, we have that Pnf and Qnf are identical so
P = E Q. h
Proof (Lemma 6).

1. By construction of u)u2
1 .

2. It is enough to consider the valuation v0 defined as:
v 0ðAlÞ ¼
vðAkÞ if 0 6 maxinðAl;uÞ < k

vðAlÞ otherwise

�

3. By construction of u)u2
1 . h
Proof (Lemma 7). The proof will be done immediate by structural
induction on P.

P = nil or P ¼U. Trivial since vars(/(P)) = ;.
P = B;P0. In this case /(P) = Bm+1 ^ /(P0) where

m = maxin(B,/(P)). In this case Al – Bm+1. So
either A – B or A = B and l – m + 1. In the sec-
ond case we can deduce l 6m, because of the
definition of maxin. So in both cases
Al 2 vars(/(P0)) so we obtain the result by
structural induction.

P ¼ B; P0. Trivial since vars(/(P)) = ;.
P = P1 _ P2 In this case /ðPÞ ¼ /ðP1Þ)/ðP2Þ _ /ðP1Þ)/ðP2Þ.

Since v�/(P), then v 	 /ðP1Þ)/ðP2Þ or
v 	 /ðP2Þ)/ðP1Þ. Let assume the first case.
Since v 	 /ðP1Þ)/ðP2Þ, v�/(P1). Then we have
the following cases
Al 2 vars(/(P1)) Then we obtain the result by induction on P1.
Al R vars(/(P1)) . Let consider m = maxin(A,/(P1)). Then, by Lemma

6.3, m < l 6maxin(A,/(P2)). Since v(Al) = 0 and
v 	 /ðP2Þ)/ðP1Þ, by construction of /ðP2Þ)/ðP1Þ,
we obtain v(Ak) = 0 for m 6 k 6 l. Therefore
v(Am) = 0 and then, by induction on P1, we obtain
the result.
P = P1 ^ P2. This case is done directly by structural induction.
P = B) CinP0

or P = B; CinP0.
If A – B or A – C the result is obtained by applying directly struc-
tural induction. Let us assume that A = B (the case when A = C is
identical changing B by C). Let us consider m = maxin(B,/(P0)). If
l 6m then Al 2 vars(/(P0)) and we obtain the result by structural
induction. So it remains the case when l = m + 1. If l = 0 there is
nothing to prove, so let us assume l > 0. Since v�/(P) we obtain
v�:Am+1 ? Am. Since v(Am+1) = 0 then m = �1 or v(Am) = 0, we us
assume m P 0 because if m = �1 there is nothing left to prove.
Because of the definition of maxin, Am 2 vars(/(P0)). Then, by struc-
tural induction, v(Ak) = 0 for k 6m = l � 1 that completes the result.

P = P0) B. This case is the same as P = A;P.

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1945
P = P0nB. This case is done directly by structural
induction. h
Proof (Proposition 9). The proof will be done by structural induc-
tion of P. In all cases we are going to use Theorem 1: prod(P) = sPt.

P = nil or P ¼U. These are the base cases, and it is immediate. /
(nil) is not satisfiable and prod(nil) = ;.
While the valuation v such that v(Ak) = 0 for
any A 2 F and k 2 N meets the thesis for
P ¼U.

P = A;P0. In this case /(A;P0) = Al+1 ^ /(P0) where l = max-

in(A,/(P0)).
Let us consider p 2 prod(P), then there is
p0 2 prod(P0) such that p = {A} [p0. By applying
induction on P0 there is a valuation v0 that meet
the thesis for p0 and P0. Let us consider the val-
uation v = v0[Al+1/1].7 It is easy to check that v
holds the thesis for p and P:
� v�Al+1 ^ /(P0) since Al+1 R vars(/(P0)).
� Let us consider B 2 p. Then B = A or B 2 p0. In the first case

v(Al+1) = 1. In the second case, by induction, k P 0 and v0(Bk) = 1
where k = maxin(B,/(P0)). Then v0(Bk) = 1 and k = maxin(B,/
(P)) = maxin(B,/(P0)).
� Now let us consider B R p. Then B – A and B R p0. By induction,

k = �1 or v0(Bk) = 0 where k = maxin(B,vars/(P0)). Then k = max-

in(B,vars/(P)) and k < 0 or v(Bk) = 0.
P = P1 _ P2. In this case prod(P) = prod(P1) [prod(P2). Therefore
p 2 prod(P) iff p 2 prod(P1) or p 2 prod(P2). Let us
suppose p 2 prod(P1) (the other case is symmetric).
By induction there is a valuation v satisfying the thesis
for p and P1. Now let us consider the valuation v0

defined in the proof of Lemma 6.2. Let us prove that
v0 meets the thesis.
� Since v�P1, then v 0 	 /ðP1Þ)/ðP2Þ.
� Now let us consider a feature A 2 p. By induction v(Ak) = 1 where

k = maxin(A,/(P1)). Then v0(Ak) = 1 by construction of v0. If
k = maxin(A,/(P)) we have the result. So, let us suppose k < max-

in(A,/(P)), let m = maxin(A,/(P)). Since v0�/(P), if v(Am) = 0, by
Lemma 7, we could conclude v(Ak) = 0, therefore v(Am) = 1.
� Finally let us consider A R p. By induction m = �1 or v(Am) = 0

where m = maxin(A,/(P1)). If m = maxin(A,/(P)), by construction
of v0, v0(Am) = 0. If m < maxin(A,/(P)), then let us consider
l ¼ maxinðA;/ðP2ÞÞ ¼ maxinðA;/ðP1Þ)/ðP2ÞÞ. By construction of
v0,v0(Al) = v(Am) = 0.
P ¼ A; P0. This case is a particular case of the previous one since
P ¼ EU _ A; P0.

P = P1 ^ P2. In this case p 2 prod(P) iff there is p1 2 prod(P1) and
p2 2 prod(P2) such that p = p1 [p2. By induction on
P1 and P2, there is a valuation v1 holding the thesis
for p1 and P1 and v2 holding the thesis for p2 and P2.
Let us consider the valuation v defined as
7 v[A/
vðxÞ ¼
1 if v1ðxÞ ¼ 1 and x 2 varsð/ðP1ÞÞ
1 if v2ðxÞ ¼ 1 and x 2 varsð/ðP2ÞÞ
0 othewise

8><
>:
This valuation holds the thesis for p and P:
x](B) = v(B) if A – B and v[A/x](A) = x.
� Since P is safe and the only operators that introduce negated
boolean variables are the restrictions, there are no negated
boolean variables in /(P1) or in /(P2). Therefore v�/(P) = /
(P1) ^ /(P2).
� Let us consider a feature A 2 p. Then A 2 p1 or A 2 p2. Let us

assume A 2 p1, the other case is symmetric. Then, by induction,
v1(Al) = 1 where l = maxin(A,/(P1)). Then, by construction of v,
v(Al) = 1 Let us consider m = maxin(A,/(P)). If v(Am) = 0, by
Lemma 7 v(Al) = 0, so v(Am) = 1
� Let us consider A R p. Then A R p1 and A R p1 Let us consider

l = maxin(A,/(P)). then l = maxin(A,/(P1)) or l = maxin(A,/(P2)).
Let us suppose l = maxin(A,/(P1)), the other case is symmetric.
Since A R p1, l = �1 or v1(A) = 0. There two possibilities l = max-

in(A,/(P2)) or l < maxin(A,/(P2)). In the second case Al R vars(/
(P2)) so, by construction of v,v(Al) = 0. In the first case, by induction,

l = �1 or v2(Al) = 0; so, by construction of v,v(Al) = 0.
P = A) BinP0. In this case /(P) = (:Al+1 ? :Al) ^ (:Bm+1 ?
:Bm) ^ (Al+1 ? Bm+1) ^ /(P0) where l = maxin(A,/
(P0)) and m = maxin(B,/(P0)).
Let us consider p 2 prod(P) iff there is
p0 2 prod(P0) such that p = p0 and A R p0 or
p = p0 [{B} and A 2 p0. In both cases, by induction,
there is a valuation v0 satisfying the thesis for p0

and for P0.

Let us consider the valuation v according to the following cases:

A 2 p0. Then v = v0[Al+1/1, Bm+1/1].
A R p0 and B 2 p0. Then v = v0[Al+1/0,Bm+1/1].
A R p0 and B R p0. Then v = v0[Al+1/0,Bm+1/0].

It is easy to check that all three cases v satisfy the conditions for
p and P:
� Due to the way v and /(P) are defined, v�/(P).
� Let us consider C 2 p. If C = B there are two cases B 2 p0 or A 2 p0;

in both cases, by construction of v,v(Cm+1) = 1. If C = A then
A 2 p0, so v(Al+1) = 1. If C – B and C – B, then C 2 p0 and by
induction l P 0 and v0(Cl) = v(Cl) = 1 for l = maxin(C,/(P0)) =
maxin(C,/(P))
� Let us consider C R p. Then C R p0. By induction l < 0 or v0(Cl) = 0

for l = maxin(C,/(P0)). If C – A or C – A, then l = maxin(C,/(P0)) and
l < 0 or v(Cl) = v0(Cl) = 0. If C = B, then B R p0 and, by construction
of v,v(Bm+1) = 0. If C = A, then A R p0 and, by construction of v,
v(Al+1) = 0
P = A; BinP0. In this case /(P) = (:Al+1 ? :Al) ^ (:Bm+1 ?
:Bm) ^ (:Al+1 _ :Bm+1) ^ /(P0) where l = max-

in(A,/(P0)) and m = maxin(B,/(P)). Moreover,
p 2 prod(P) iff p 2 prod(P0) and A R p or B R p.
Let us assume the first case (the other is sym-
metric). By induction hypothesis there is a valu-
ation v0 satisfying the thesis for p and P0. Now
there are two cases B 2 p or B R p, in the first case
let us consider v = v0[Al+1/0,Bm+1/1], in the second
case let us consider v = v0[Al+1/0,Bm+1/0]. Let us
check that v satisfies the thesis for p and P:
� Let us check that v�/(P) by analyzing its parts. Since A R p, by
induction, l < 0 or v(Al) = 0, so v�:Al+1 ? :Al. Also by induction,
B 2 p iff B 2 p0 iff m P 0 and v0(Bm) = 1. Therefore v�:Bm+1 ?
:Bm. By construction v�:Al+1 _ :Bm+1 and by induction v0�/
(P0). Since Al+1,Bm+1 R vars(/(P0)),v�/(P0).
� Let us consider C 2 p, since we are considering A R p0,C – A. If
C = B, then B 2 p0. Therefore, by construction of v, v(Bm+1) = 1.

1946 C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947
Otherwise by induction hypothesis, k P 0 and v0(Ck) = 1 for
k = maxin(C,/(P0)). Then k = maxin(C,/(P)) and v(Ck) = v0(Ck) = 1.
� Let us consider C R p. If C = A then v(Al+1) = 0. If C = B then

v(Bm+1) = 0. If C – A and C – B, by induction k < 0 or v0(Ck) = 0
for k = maxin(C,/(P0)). Let us observe that k = maxin(C,/(P)) and
v(Ck) = v0(Ck) = 0
P = P0) A. This case is the same as P = A;P.
P = P0nA. In this case /(P) = : Al ^ /(P) where l = maxin(A,/(P0)).

Let us consider p 2 prod(P), then there is p 2 prod(P0)
such that A R p. By structural induction there is a val-
uation v holding the thesis for p and P0. Let us check
that v also satisfies the conditions for P.

� First v�/(P). There are two cases: l = �1 or l P 0. In the first
case, the Al�1 is the symbol \. In the second case, since A R p,
by induction v(Al) = 0. In any case, by induction hypothesis,
v� :Al ^ /(P0).

� Let us consider a feature B. By induction, B 2 p iff l > 0 and
v(Bl) = 1 where l = maxin(B,/(P0)). To conclude this item it is
enough to consider that vars(/(P)) = vars(/(P0)).

The second condition holds trivially since vars(/(P)) = vars(/
(P0)). h
Proof Proposition 10. The proof will be done by structural induc-
tion on P.

P = nil or P ¼U. These are the base cases, and it is immediate.
/(nil) is not satisfiable and prod(nil) = ;.
While the only product of U, the empty set
;, has no features.

P = A;P0. In this case /(A;P0) = Al+1 ^ /(P0) where l = max
(0,maxin(A,/(P0))). If v�/(P), then v�/(P0). By
structural induction there is p0 2 prod(P0), sat-
isfying the thesis. Let us consider
p = p0 [{A} 2 prod(P). By the definition of the
denotational semantics of the prefix operator,
p 2 prod(A;P0).
Now let us consider a feature C such that
v(Ck) = 0 for all 0 6 k 6 maxin(C,/(P)). Since
v�/(P), v(Al+1) = 0,C – A. By induction, C R p0,
then, by construction of p,C R p.

P = P1 _ P2. In this case /P ¼ /ðP1Þ)/ðP2Þ _ /ðP2Þ)/ðP1Þ.
Since v�/(P), then v 	 /ðP1Þ)/ðP2Þ or
v 	 /ðP2Þ)/ðP1Þ. Let us suppose v 	 /ðP2Þ)/ðP1Þ

(the other case is symmetrical). By Lemma
6.1, v�/P2. Then, by induction, there is a prod-
uct p 2 prod(P2) that meet the thesis for p and
P2. Since prod(P) = prod(P1) [prod(P2),
p 2 prod(P). Now let us consider a feature A

such that v(Al) = 0 for all 0 6 l 6 maxin(A,/(P)).
Since maxin(A,/(P)) P maxin(A,/(P2)), by
induction, A R p.

P ¼ A; P0. This case is a particular case of the previous
one since P ¼ EU _ A; P0.

P = P1 ^ P2. In this case /(P) = /(P1) ^ /(P2). Since v�/(P)
then v�/(P1) and v�/(P2). By structural induc-
tion there is p1 2 prod(P1) that meet the thesis
for v and P1 and there is p2 2 prod(P2) that
meet the thesis for v and P2. Let us show
p = p1 [p2 meet the thesis for v and P. First,
by the definition of the operators p 2 prod(P).
Now let us consider a feature A such that
v(Al) = l for all 0 6 k 6maxin(A,/(P)). Since
maxin(A,/(P)) P maxin(A,/(P1)) and maxin(A,/
(P)) P maxin(A,/(P2)), by induction A R p1 and
A R p2. Therefore A R p1 [p2 = p.

P = A) BinP0. In this case /(P) = (:Al+1 ? :Al) ^ (:Bm+1 ?
:Bm) ^ (Al+1 ? Bm+1) ^ /(P0) where l = max-

in(A,/(P0)) and m = maxin(B,/(P0)). Let us con-
sider v a valuation such that v�/(P). By
induction, there is p0 2 prod(P0) holding the
thesis for v and P.
There are two cases A 2 p0 or A R p0. In the first
case let us consider p = p0 [{B} 2 prod(P), and
in the second case let p = p0. Let us check that,
in both cases, p hold the thesis for v and P. By
the definition of the denotational semantics,
p 2 prod(P). Now let us consider a feature C

such that v(Ck) = 0 for all with k 2 N. There
are the following cases:
C = A. By induction A R p0. Then, by construction of p,
A R p.

C = B. By induction B R p0. Since v(Bm+1) = 0 and v�/
(P),v(Al+1) = 0. Then, l = �1 or v(Al) = 0. Then,
by Lemma 7, v(Ak) = 0 for all 0 6 k < l. So, by
induction, A R p0. Since B R p0 and A R p0, by con-
struction of p, B R p.

C – B and C – A. In this case, by induction, C R p0. Since C – B

and C – A, by construction of p,C R p.
P = A; BinP0. In this case /(P) = (:Al+1 ? :Al) ^ (:Bm+1 ?
:Bm) ^ (:Al+1 _ :Bm+1) ^ /(P0) where l = maxin(A,/
(P0)) and m = maxin(B,/(P0)).
Let us consider v such that v�/(P). Then v�/(P0),
and by induction, there is p 2 prod(P0) that holds
the thesis for v and P0. Let us show that p also
holds the thesis for v and P. First we will prove
that p 2 prod(P). Since v�/(P), v(Al+1) = 0 or
v(Bm+1) = 0; let us assume v(Bm+1) = 0, the other
case is symmetric. Since v�/(P), m = �1 or
v(Bm) = 0, then, by Lemma 7, v(Bk) = 0 for
0 6 k 6m. Then, by induction, B R p. So, by the def-
inition of the denotational semantics, p 2 prod(P).
Now let us consider a feature C such that v(Ck) = 0
for all 0 6 k 6maxin(C,/(P)). There are the follow-
ing cases:
C = A. Then k = l + 1 and l = maxin(A,/(P0)). Since v�/(P)
and v(Al+1) = 0,l = �1 or v(Al) = 0. Then, by Lemma
7, v(Ak) = 0 for 0 6 k 6 l. Therefore, by induction,
A R p.

C = B. Since v�/(P) and v(Bm+1) = 0,m = �1 or v(Bm) = 0.
Then by Lemma 7, v(Bk) = 0 for 0 6 k 6m. Then,
by induction B R p.

C – B and C – A. In this case it is enough to consider that max-

in(C,/(P0)) = maxin(C,/(P)). Then, by induction,
C R p.
P = P0) A. This case is the same as P = A;P.
P = P0nA. In this case /(P) = :Al ^ /(P0) where l = maxin(A,/(P0)).

Let us consider a valuation v such that v�/(P). Then
v�/(P0). By induction there is p 2 prod(P0) holding
the thesis for v and P0. Let us check that p holds the
thesis for v and P. First, let us show that A R p. Since
v�/(P), there are two cases l = �1 or l P 0 and
v(Al) = 0. Then, by Lemma 7, v(Ak) = 0 for 0 6 k 6 l.

C. Andrés et al. / Information and Software Technology 55 (2013) 1925–1947 1947
Then, by induction, A R p. So, by the definition of the
semantic operator s � nAt,p 2 prod(P). Now let us
consider a feature C such that v(Ck) = 0 for
0 6 k 6maxin(C,/(P)). We have already proved that
A R p, so we can assume that C – A. Since maxin(C,/
(P)) = maxin(C,/(P0)), we obtain C R P by induction. h
References

[1] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2001.

[2] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer, 2005.

[3] S. Kotha, From mass production to mass customization: the case of the
national industrial bicycle company of Japan, European Management Journal
14 (5) (1996) 442–450, http://dx.doi.org/10.1016/0263-2373(96)00037-0.

[4] R. Milner, A Calculus of Communicating Systems (LNCS 92), Springer, 1980.
[5] C. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[6] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.
[7] R. Hierons, J. Bowen, M. Harman (Eds.), Formal Methods and Testing, LNCS

4949, Springer, 2008. doi:http://dx.doi.org/10.1007/978-3-540-78917-8.
[8] R. Hierons, K. Bogdanov, J. Bowen, R. Cleaveland, J. Derrick, J. Dick, M.

Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen, A. Simons, S. Vilkomir,
M. Woodward, H. Zedan, Using formal specifications to support testing, ACM
Computing Surveys 41 (2) (2009) 9:1–9:76, http://dx.doi.org/10.1145/
1459352.1459354.

[9] I. Rodríguez, A general testability theory, 20th International Conference on
Concurrency Theory, CONCUR’09, LNCS 5710, Springer, 2009, pp. 572–586.
doi:http://dx.doi.org/10.1007/978-3-642-04081-8_38.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) feasibility study, Tech. Rep. CMU/SEI-90-TR-21, Carnegie
Mellon University, 1990.

[11] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach, Addison-Wesley, 2000.

[12] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig,
B. Paech, J. Wüst, J. Zettel, Component-Based Product Line Engineering with
UML, Addison-Wesley, 2002.

[13] C. Krzysztof, H. Simon, W. Ulrich, Staged configuration through specialization
and multilevel configuration of feature models, Software Process:
Improvement and Practice 10 (2) (2005) 143–169.

[14] D. Fischbein, S. Uchitel, V. Braberman, A foundation for behavioural
conformance in software product line architectures, in: Workshop on Role of
Software Architecture for Testing and Analysis, ROSATEA’06, ACM Press, 2006,
pp. 39–48. doi:http://dx.doi.org/10.1145/1147249.1147254.

[15] A. Fantechi, S. Gnesi, A behavioural model for product families, in: 6th Joint
Meeting on European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering: Companion Papers,
ESEC-FSE companion ’07, ACM Press, 2007, pp. 521–524. doi:http://dx.doi.org/
10.1145/1287624.1287700.

[16] K. Larsen, U. Nyman, A. Wasowski, Modal I/O automata for interface and
product line theories, in: 16th European Conference on Programming, ESOP’07,
Springer, 2007, pp. 64–79. doi:http://dx.doi.org/10.1007/978-3-540-71316-
6_6.

[17] K.G. Larsen, U. Nyman, A. Wasowski, On modal refinement and consistency, in:
18th International Conference on Concurrency Theory, CONCUR’07, LNCS
4703, 2007, pp. 105–119. doi:http://dx.doi.org/10.1007/978-3-540-74407-
8_8.

[18] A. Fantechi, S. Gnesi, Formal modeling for product families engineering, in:
12th International Software Product Line Conference, SPLC’08, IEEE Computer
Society Press, 2008, pp. 193–202. doi:http://dx.doi.org/10.1109/SPLC.2008.45.

[19] P. Asirelli, M.H. ter Beek, A. Fantechi, S. Gnesi, A logical framework to deal with
variability, in: 8th International Conference on Integrated Formal Methods,
IFM’10, Springer, 2010, pp. 43–58. doi:http://dx.doi.org/10.1007/978-3-642-
16265-7_5.
[20] P. Asirelli, M.H. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti, Design and
validation of variability in product lines, in: 2nd International Workshop on
Product Line Approaches in Software Engineering, PLEASE ’11, ACM, 2011, pp.
25–30. doi:http://dx.doi.org/10.1145/1985484.1985492.

[21] P. Asirelli, M.H. ter Beek, S. Gnesi, A. Fantechi, Formal description of variability
in product families, in: 15th International Software Product Line Conference,
SPLC ’11, IEEE Computer Society Press, 2011, pp. 130–139. doi:http://
dx.doi.org/10.1109/SPLC.2011.34.

[22] D. Batory, Feature models, grammars, and propositional formulas, in: 9th
International Software Product Line Conference, SPLC’05, Springer, 2005, pp.
7–20. doi:http://dx.doi.org/10.1007/11554844_3.

[23] D. Benavides, S. Segura, A. Ruiz, Automated analysis of feature models 20 years
later: a literature review, Information Systems 35 (6) (2010) 615–636, http://
dx.doi.org/10.1016/j.is.2010.01.001.

[24] P.Y. Schobbens, P. Heymans, J.-C. Trigaux, Y. Bontemps, Generic semantics of
feature diagrams, Computer Networks 51 (2) (2007) 456–479, http://
dx.doi.org/10.1016/j.comnet.2006.08.008.

[25] R. Muschevici, J. Proença, D. Clarke, Modular modelling of software product
lines with feature nets, in: 9th International Conference Software Engineering
and Formal Methods, SEFM’11, 2011, pp. 318–333.

[26] P. Höfner, R. Khédri, B. Möller, Feature algebra, 14th International Symposium
on Formal Methods, FM’06, LNCS 4085, Springer, 2006, pp. 300–315.

[27] P. Höfner, R. Khédri, B. Möller, An algebra of product families, Software and
System Modeling 10 (2) (2011) 161–182, http://dx.doi.org/10.1007/s10270-
009-0127-2.

[28] A. Gruler, M. Leucker, K. Scheidemann, Modeling and model checking software
product lines, 10th IFIP WG 6.1 International Conference, FMOODS’08, LNCS
5051, Springer, 2008, pp. 113–131.

[29] M. Mannion, Using first-order logic for product line model validation, in: 2nd
International Software Product Line Conference, SPLC’02, Springer, 2002, pp.
176–187.

[30] Y. Bontemps, P. Heymans, P. Schobbens, J. Trigaux, Semantics of FODA feature
diagrams, in: 1st Workshop on Software Variability Management for Product
Derivation Towards Tool Support, SPLCW’04, Springer, 2004, pp. 48–58.

[31] K. Czarnecki, S. Helsen, Feature-based survey of model transformation
approaches, IBM Systems Journal 45 (3) (2006) 621–646.

[32] P. Heymans, P. Schobbens, J. Trigaux, Y. Bontemps, R. Matulevicius, A. Classen,
Evaluating formal properties of feature diagram languages, IET Software 2 (3)
(2008) 281–302.

[33] M. Mendonça, A. Wasowski, K. Czarnecki, SAT-based analysis of feature
models is easy, in: 13rd International Software Product Line Conference,
SPLC’09, 2009, pp. 231–240, doi:http://dx.doi.org/10.1145/1753235.1753267.

[34] P. Chen, The entity-relationship model toward a unified view of data, ACM
Transactions on Database Systems 1 (1976) 9–36.

[35] M. Griss, J. Favaro, Integrating feature modeling with the RSEB, in: 5th
Interantional Conference on Software Reuse, ICSR’98, 1998, pp. 76–85.

[36] M. Eriksson, J. Borstler, K. Borg, The pluss approach – domain modeling with
features, use cases and use case realizations, in: 9th International Conference
on Software Product Lines, SPLC’06, Springer-Verlag, 2006, pp. 33–44.

[37] H. Palikareva, J. Ouaknine, A.W. Roscoe, SAT-solving in CSP trace refinement,
Science Computer Programming 77 (10–11) (2012) 1178–1197. http://
dx.doi.org/10.1016/j.scico.2011.07.008.

[38] H. Palikareva, J. Ouaknine, B. Roscoe, Faster fdr counterexample generation
using sat-solving, ECEASST 23.

[39] Y. Liu, J. Sun, J.S. Dong, An analyzer for extended compositional process
algebras, in: Companion of the 30th International Conference on Software
Engineering, ICSE Companion ’08, ACM, New York, NY, USA, 2008, pp. 919–
920. doi:http://dx.doi.org/10.1145/1370175.1370187.

[40] S. Segura, R. Hierons, D. Benavides, A. Ruiz, Automated metamorphic testing on
the analyses of feature models, Information & Software Technology 53 (3)
(2011) 245–258, http://dx.doi.org/10.1016/j.infsof.2010.11.002.

[41] A. Classen, Q. Boucher, P. Heymans, A text-based approach to feature
modelling: syntax and semantics of TVL, Science of Computer Programming
76 (12) (2011) 1130–1143, http://dx.doi.org/10.1016/j.scico.2010.10.005.

[42] L. Llana, M. Núñez, I. Rodrı́guez, Derivation of a suitable finite test suite for
customized probabilistic systems, Formal Techniques for Networked and
Distributed Systems – FORTE 2006, LNCS 4229, Springer, 2006, pp. 467–483.
doi:http://dx.doi.org/10.1007/11888116_33.

http://refhub.elsevier.com/S0950-5849(13)00126-2/h0005
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0005
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0005
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0010
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0010
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0010
http://dx.doi.org/10.1016/0263-2373(96)00037-0
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0020
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0020
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0025
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0025
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0030
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0030
http://dx.doi.org/10.1007/978-3-540-78917-8
http://dx.doi.org/10.1145/1459352.1459354
http://dx.doi.org/10.1145/1459352.1459354
http://dx.doi.org/10.1007/978-3-642-04081-8_38
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0050
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0050
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0050
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0055
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0055
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0055
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0055
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0060
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0060
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0060
http://dx.doi.org/10.1145/1147249.1147254
http://dx.doi.org/10.1145/1287624.1287700
http://dx.doi.org/10.1145/1287624.1287700
http://dx.doi.org/10.1007/978-3-540-71316-6_6
http://dx.doi.org/10.1007/978-3-540-71316-6_6
http://dx.doi.org/10.1007/978-3-540-74407-8_8
http://dx.doi.org/10.1007/978-3-540-74407-8_8
http://dx.doi.org/10.1109/SPLC.2008.45
http://dx.doi.org/10.1007/978-3-642-16265-7_5
http://dx.doi.org/10.1007/978-3-642-16265-7_5
http://dx.doi.org/10.1145/1985484.1985492
http://dx.doi.org/10.1109/SPLC.2011.34
http://dx.doi.org/10.1109/SPLC.2011.34
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.comnet.2006.08.008
http://dx.doi.org/10.1016/j.comnet.2006.08.008
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0115
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0115
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0115
http://dx.doi.org/10.1007/s10270-009-0127-2
http://dx.doi.org/10.1007/s10270-009-0127-2
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0125
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0125
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0125
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0125
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0130
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0130
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0130
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0130
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0135
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0135
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0135
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0135
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0140
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0140
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0145
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0145
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0145
http://dx.doi.org/10.1145/1753235.1753267
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0150
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0150
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0155
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0155
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0155
http://refhub.elsevier.com/S0950-5849(13)00126-2/h0155
http://dx.doi.org/10.1016/j.scico.2011.07.008
http://dx.doi.org/10.1016/j.scico.2011.07.008
http://dx.doi.org/10.1145/1370175.1370187
http://dx.doi.org/10.1016/j.infsof.2010.11.002
http://dx.doi.org/10.1016/j.scico.2010.10.005
http://dx.doi.org/10.1007/11888116_33

	A formal framework for software product lines
	1 Introduction
	2 Related work
	3 FODA algebra
	3.1 Syntax of FODA
	3.2 Translation: from FODA to SPLA

	4 Operational semantics
	5 Denotational semantics
	5.1 Correctness of the translation
	5.2 Full abstraction

	6 Axiomatic semantics
	7 Checking satisfiability
	8 Study of VSS system
	9 The SPLA Tool
	9.1 Satisfiability module
	9.2 Denotational semantic module

	10 Conclusions and future work
	Acknowledgements
	Appendix A Proofs of the results
	References

