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Software Product Lines modeling improves software development processes by automating 
system debugging and analysis. The objective of this paper focuses on extending the 
formal framework SPLA to represent features such as cost objects and comparisons 
between products in terms of production costs. We illustrate this extension with a practical 
example by modeling the creation of valid run-lists for Chef, a widely used configuration 
management tool. Also, we execute our formal specification in a distributed system using 
SCOOP and we provide strategies to optimize the effort required to compute a SPLA term.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The main purpose of Software Product Lines (in short, SPLs) is to produce products while increasing productivity and 
shortening the time-to-market period. SPLs depend on which software products are being produced and which of them are 
better for a specific criterion. When products are represented in a product line organization, several modeling approaches 
can be used to increase both quality and productivity. In most cases this is represented in the form of features, relationships 
and constraints. For instance, some of these approaches are FODA [1], RSEB [2] and PLUSS [3,4].

Automatic and formal approaches arise from these graphical representations to model variability and commonality of 
systems. Formal models allow for detecting errors in the early stages of the production process. Some of the existing 
approaches use algebras and semantics [5–8], while others use propositional or first order logic [9–13].

Feature Oriented Domain Analysis [1] (in short, FODA) is a graphical representation of commonality and variability of 
systems. Fig. 1 shows all FODA relationships and constraints. In order to perform automatic analysis, graphical represen-
tations must be transformed into mathematical entities [14]. Thus, it is necessary to provide the original FODA graphical 
representation with formal semantics base, where automated analysis can be performed [15]. This issue is solved by using 
SPLA [8], a formal framework to represent FODA diagrams using process algebras. SPLA can only be applied not only to
FODA, but also to represent other feature-related problems and variability models.

Costs within our formal framework refer to the required effort to add a feature to a product under construction. This 
cost refers to many factors depending on the context of the product line organization. For example, the cost of adding a 
feature to a product can be equal to the number of lines of code of a software component [16,17], or the effort, in terms 
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Fig. 1. FODA diagram representation.

of human hours, to develop that module. This effort is usually measured by using functional metrics [18–20]. The cost of 
adding third-party modules, both commercial and open source, to our SPL could be the time associated with integrating it 
into the product line organization.

The order in which features are computed is important in many software projects and has an important relevance to 
the final cost of the project. This order can be easily incorporated into the operational semantics of SPLA. In this paper we 
represent costs with natural numbers. This is not a drawback of our formalism because we can assume a minimum cost 
unit, and therefore, any cost can be represented as a multiple of this unit.

This paper uses a popular automation framework, called Opscode Chef [21], to present an example about a practical 
application of costs in our cost-based model. Chef is a software that provides the ability to create software modules for 
configuring both physical and virtual machines. The main objective of Chef is to translate to code the infrastructure of an 
organization. This enables to configure each node represented within a Chef environment, in a configuration state.

The main goal of this paper is to extend SPLA in order to include in the model both cost analysis and the capability for 
comparing valid products. This formal extension is targeted to represent features as cost objects [22] and product lines as 
cost-based systems [23,24]. It will enable product-management decisions and cost estimations, even when products are in 
the earlier stages of the development process or in any iteration of the SPL.

We can summarize the contributions of this paper as follows:

• We have extended the algebra SPLA in order to support costs. Although this extension has been as conservative as 
possible with the existing language, a rule in the original operational semantics has been modified.

• We have presented a practical example of our approach by using a widely used configuration management system, 
called Chef, in order to calculate the run-list that provides the minimum cost given a set of Chef Recipes

• We have developed a prototype of our approach in order to compute valid products among a distributed system using 
SCOOP.

• We have studied several methods to optimize the computation of SPLA terms in order to reduce the computing effort 
required to produce the valid products set from our approach.

This paper is structured as follows. In Section 2 we review the use of costs in SPLs. In Section 3 we present some 
previous results from SPLA and an introduction about the automation platform used in our practical example. Section 4
describes our cost-based extension for computing SPLA terms. Section 5 presents an example of how our semantics ex-
tension can be applied to generate valid run-lists (products) for Chef. Section 6 describes our implementation and some 
considerations that can be taken into account in further implementations. Finally, Section 7 presents our conclusions and 
future work.

2. Related work

In this section we present some works related to a novel characteristic introduced in the paper, using costs and the order 
in which features are computed in SPLs.

2.1. “Cost” estimation in SPLs

This section introduces cost estimation analysis for software product lines. An important factor in the success of a 
software development project depends on the accuracy for estimating the project costs. Generally, the term Cost in SPLs
is based on quantifying the effort to generate valid products inside a product line environment. In order to achieve this, all 
software components must be sized. For instance, these costs can be represented as development time, the number of code 
lines and difficulty to integrate a module into the product line environment.

Software cost estimation is based on code [16,17] or functional size metrics [18–20]. The term “size” must be referenced 
as an important attribute of a software product and it does not always refer to the occupied space or the number of lines 
of code. Additionally, it may refer to the accumulative estimation of several aspects, like the difficulty in solving a problem, 
predicting how many developers are needed, defining the development environment and the hardware platform involved 
in the project or even analyzing how software components can be integrated. Also, this effort may be formally represented 
depending on the manager’s needs [25], the organizational requirements of product lines, scenarios or available components. 
This kind of analysis is based on the manager’s personal convictions, and therefore, these types of approaches are not yet 
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mature engineering processes. Other studies [22] measure effort levels by analyzing the product cycle evolution and, from 
that point of view, determining their costs.

2.2. SPLs and SAT-solvers

SAT-solving approaches have being extensively studied to validate feature models [26–29]. These solutions rely in the def-
inition of a boolean satisfiability problem representing a variability model condition. Our previous studies had demonstrated 
that SAT approaches are fast enough to compute variability models within the order of thousands features in millisec-
onds [8]. It can be also applied to compute the products from an SPL without ordering the features positions, in which case 
we have proven that acceptable computing times are achieved if the model is in the order of thousands of valid products.

In contrast with these works, our approach presents several improvements. First, our work addresses the worst-case 
scenario, in which we compose the valid products of an SPL by using the appearing order of the features (a special condition 
not addressed by other studies). Second, we propose several approaches to reduce the total computing time when feature 
models are processed.

2.3. Optimal cost scheduling

Several studies have been made on algorithms to solve cost-optimal reachability problems [30–32]. These studies use 
timed automata in order to model and represent the behavior of computer systems. For modeling real-time systems this 
approach has been established as a standard formalism using a set of mature checking and modeling tools as Uppaal 
Cora [33] or Kronos [34], tools for modeling, simulating and validating real-time systems [35].

It is important to remark that these studies rely on solving the problem by using a branch and bound algorithm, or any 
specific heuristic, in order to cut-off the computing time required to produce a valid output. On the contrary, our approach 
uses different techniques, which does not include heuristics, for reducing the total computing time.

2.4. Process algebras and cost analysis

Previous studies related to SPL modeling costs [16–20,25,22], measure the computed features as whole products. These 
approaches do not consider the order in which features are computed to generate a valid product. This feature is important 
since this computing order can affect the final cost of the product. On the contrary, our approach takes into account the 
order in which features are computed.

We take the benefits of process algebras studies to model SPLs using the computing order as an important factor when 
products are built. Several studies on process algebras [36–39] show that properties as costs can be used to model dynamic 
contexts.

Several formal approaches to model software product lines have been defined [1,40–42]. Also studies exist about formal-
izing different types of feature models [15,43–48]. Using previous studies on process algebras and software product lines [8], 
we are able to model the order in which features are computed, a novel characteristic of software product line modeling 
not covered by previous SPLs research articles.

In the next section we present a brief description of Chef [21] and SPLA [8] to make this paper self-contained.

3. Preliminaries

In this section, we present all the required information to make this paper self-contained. Initially, we introduce Chef, 
an automation platform to code the infrastructure specification of a computing environment. Also, we show a description of 
SPLA [8], which represents our formal specification for Software Product Lines.

3.1. Opscode Chef

Chef is an automation tool [21] that provides the ability to orchestrate the execution of a set of instructions (recipes) in 
order to configure a specific computing node.

This system eases the process of centralizing the configuration of several nodes in a single repository. Thus, the system 
allows us to code our node infrastructure. All the centralized code can be applied to virtual or physical machines without 
any infrastructure condition.

The basic configuration of a Chef infrastructure consists of, at least, one workstation, one server and a set of registered 
nodes. Once these nodes have executed the chef-client command, the Chef server specify which recipes needs to be exe-
cuted. Recipes are grouped in cookbooks and roles, depending on the system configuration. Once the Chef server calculates 
the list of recipes to be executed (run-list) the node proceeds to execute the corresponding steps in order to set the node 
in a desired state, it being a state in which all the recipes were correctly executed.
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Fig. 2. Chef architecture.

In Section 5 we present a complete example that illustrates how to create valid run-lists for a configuration system. 
However, for the sake of clarity, we first show how Chef components work to generate valid run-lists. Fig. 2 describes all 
the components of a Chef system. All the Chef server components are explained in further detail in the official documenta-
tion [21]:

• Chef server. A Chef server is a configuration hub. It stores all the required information to configure the registered nodes.
• Node. A node is a computing resource registered with in the Chef server.
• Ohai. Ohai is a software tool which retrieves hardware related information about a registered node.
• Run-list. A run-list is a list of recipes required to configure a node.
• Recipe. A recipe is the fundamental configuration element, specifies the resources to be called.
• Cookbook. Represents a set of recipes, resources, providers and attributes.
• Data-bag. A data-bag is a global variable accessible from the Chef server.
• Chef-client. Is a tool running locally in the registered nodes. Is in charge of calculate and execute the corresponding 

run-list.
• Environment. An environment is a logical binding between nodes, recipes, data-bags and attributes. They can be created 

to represent organizations workflows like integration, test and production environments.
• Attribute. An attribute is a variable accessible within recipes which can override nodes settings.
• Role. A role is a way group recipes into a single function.
• Resource. A resource defines the step required to execute an action. For example using a resource the user can specify 

what the recipe must do, however it does not specify how to do it.

The variability model and the cost model in Section 5 have been extracted from the Chef components of Fig. 2. It is 
important to determine all the features, as well as the relationships, the constraints and the cost relations between these 
features, in order to accurately model a system.

3.2. SPLA

SPLA [8] defines a formal framework to automate the analysis of Software Product Lines. Basically, SPLA consists of a 
well-defined syntax, as an Extended BNF-like expression, and three semantics: operational, denotational and axiomatic.

3.2.1. SPLA syntax
The syntax is divided into two classes of operators, the FODA basic operators (· ∨ ·, · ∧·, A; ·, A; ·, A ⇒B in ·, A �⇒B in ·) 

and auxiliary operators (nil, �, ·\A, · ⇒ A) used to define the language semantics. F denotes a finite set of features and 
A, B, C. . . denote isolated features.
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[tick] � �−−→ nil [feat] A; P A−→ P [ofeat1] A; P A−→ P

[ofeat2] A; P �−−→ nil [cho1] P a−→ P1

P ∨ Q a−→ P1
[cho2] P a−→ P1

Q ∨ P a−→ P1

[con1] P A−→ P1

P ∧ Q A−→ P1 ∧ Q
[con2] P A−→ P1

Q ∧ P A−→ Q ∧ P1
[con3] P �−−→ nil, Q �−−→ nil

P ∧ Q �−−→ nil

[req1] P C−→ P1, C �= A

A⇒ B in P C−→ A⇒ B in P1
[req2] P B−→ P1

B⇒ A in P A−→ B; P1
[req3] P �−−→ nil

A⇒ B in P �−−→ nil

[excl1] P C−→ P1, C �= A∧ C �= B

A �⇒ B in P C−→ A �⇒ B in P1
[excl2] P A−→ P1

A �⇒ B in P A−→ P1\B
[excl3] P B−→ P1

A �⇒ B in P B−→ P1\A
[excl4] P �−−→ nil

A �⇒ B in P �−−→ nil
[forb1] P B−→ P1, B �= A

P\A B−→ P1\A
[forb2] P �−−→ nil

P\A �−−→ nil

[mand1] P �−−→ nil

P ⇒ A A−→ �
[mand2] P A−→ P1

P ⇒ A A−→ P1
[mand3] P B−→ P1, A �= B

P ⇒ A B−→ P1 ⇒ A
A,B,C ∈F , a ∈F ∪ {�}

Fig. 3. SPLA operational semantics rules.

Definition 1. A software product line is a term generated by the following Extended BNF-like expression:

P ::= � | nil | A; P | A; P |
P ∨ Q | P ∧ Q | A �⇒ B in P |
A⇒ B in P | P\A | P ⇒ A

where A, B ∈F . We denote the set of terms of this algebra by SPLA. �
Hereafter we briefly explain the operators of the algebra. There are two terminal symbols in the language, nil and �. 

The term nil represents an SPL with no products, while � is an SPL that has only the empty product. The operator A; P
indicates that A is mandatory while A; P indicates that A is optional.These two operators add the feature A to any product 
that can be obtained from P . There are two binary operators: P ∨ Q and P ∧ Q . The first one represents the choose-one
operator while the second one represents the conjunction operator. The operator A ⇒ B in P represents the require, while 
the operator A �⇒ B in P represents the exclusion constraint in FODA. Finally, there are two auxiliary operators: P ⇒ A
indicates that feature A is mandatory and P\B indicates that feature B is forbidden in P .

3.2.2. Operational semantics
Operational semantics adds meaning to SPLA terms. Basically, it defines how terms must be processed. The operational 

semantics of SPLA is presented as a labelled transition system for any term P ∈ SPLA. The transitions are annotated with 
the set F ∪{�}, with F being the set of features and � /∈F . In particular, if A ∈F , the transition P A−→ Q means that there 
is a product of P that contains the feature A. Transitions of the form P �−−→ nil mean that a product has been produced. 
The formal operational semantic rules of the algebra are presented in Fig. 3. Rule [req2] has changed in this operational 
semantics with respect to the one presented in [8]. This change will be discussed later in Section 4.3

Definition 2. Let P , Q ∈ SPLA and A ∈ F ∪ {�}. There is a transition from P to Q labeled with the symbol A, denoted by 
P A−→ Q , if it can be deduced from the rules in Fig. 3. �

Before giving any properties of this semantics let us explain the rules in Fig. 3. First we have the rule [tick]. The intuitive 
meaning of this rule is that we have reached a point where a product of the SPL has been computed. Let us note that nil
has no transitions, this means that nil does not have any valid products.

Rules [feat], [ofeat1], and [ofeat2] deal directly with the computation of features. Rule [ofeat2] means that we have a 
valid product discarding an optional feature. The prefix operator A; P indicates that feature A is a prerequisite to all products 
derived by P ; so, if we discard feature A we also have to discard all these products.

Rules [cho1] and [cho2] deal with the choose-one operator. These rules indicate that the computation of P ∨ Q must 
choose between the features in P or the features in Q .

Rules [con1], [con2], and [con3] deal with the conjunction operator. The main rules are [con1] and [con2]. These rules 
are symmetrical to each other. They indicate that any product of P ∧ Q must have the features of P and Q . Rule [con3]
indicates that both members have to agree in order to deliver a product.

Rules [req1], [req2], and [req3] deal with the require constraint. Rule [req1] indicate that A ⇒B in P behaves like P as 
long as feature A has not been computed. Rule [req2] indicates that A is a prerequisite of B: if the inner component can 
produce B, we must assure that A is produced first. Finally [req3] marks that a product has been delivered.
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Rules [excl1] to [excl4] deal with the exclusion constraint. Rule [excl1] indicates that A �⇒ B in P behaves like P as 
long as P does not compute feature A or B. Rule [excl2] indicates that once P produces A, feature B must be forbidden. 
Rule [excl3] indicates just the opposite: when feature B is computed, then A must be forbidden. This rule might be surpris-
ing, but there is no reason to forbid A �⇒B in P to compute feature B. So if A �⇒B in P computes feature B then feature A
must be forbidden. Otherwise the exclusion constraint would not have been fulfilled.

Rules [forb1] and [forb2] deal with the auxiliary operator P\A that forbids the computation of feature A. Let us note 
that there is no rule that computes A. This means that if feature A is computed by P , the computation is blocked and no 
products can be produced.

Rules [mand1], [mand2], and [mand3] deal with the auxiliary operator P ⇒ A. Rule [mand1] indicates that feature A
must be computed before delivering a product. Rules [mand2] and [mand3] indicate that P ⇒ A behaves like P . We need 
two rules in this case because when feature A is computed it is no longer necessary to continue considering this feature as 
mandatory and so the operator can be removed from the term.

Once the operational semantics of the algebra is defined, we can obtain the traces and the valid products.

Definition 3. A trace is a sequence s ∈ F∗ . The empty trace is denoted by ε . Let s1 and s2 be traces, we denote the 
concatenation of s1 and s2 by s1 · s2. Let A ∈ F and let s be a trace, we say that A is in the trace s, written A ∈ s, iff there 
exist traces s1 and s2 such that s = s1 · A · s2.

We can extend the transitions in Definition 2 to traces. Let P , Q , R ∈ SPLA, we inductively define the transitions P s−→ R
as follows: P ε−→ P ; if P A−→ Q and Q s−→ R , then P A·s−−→ R . �

Those traces ending with � are the only ones considered as valid products. It is important to remark that, since �
symbol is not a feature. It is not included in the product.

Definition 4. Let P ∈ SPLA and s ∈F∗ ,

• s is a successful trace of P , written s ∈ tr(P ), iff P s−→ Q �−−→ nil.
• The set induced by s, written [s], is the set obtained from the elements of the trace without considering their position in 

the trace.
• Let P ∈ SPLA, we define the products of P , written prod (P ), as prod (P ) = {[s] | s ∈ tr(P )}.

4. Cost-related extension

In this section we present the extension of SPLA that allows us to manage costs using the operational semantics de-
scribed in Section 3. In order to be as conservative as possible with respect to SPLA, the operational semantics will remain 
unmodified. In order to fulfill this, we define new transitions that allow the computation of costs. However, before defining 
these new transitions, we have to define a cost function.

4.1. Cost function

The addition of a software component to a product has an associated cost. However, this cost is not constant, and it 
depends on other software components in the product. We present the software components as features and the product 
under construction as a trace. Therefore, the cost function has two parameters: a trace containing the previously computed 
features and the feature being produced. This function returns the cost required for adding a feature to the computed 
features trace.

In this paper we assume that costs can be represented by natural numbers. Although all the results presented in this 
paper would be equally valid if we had chosen non-negative real numbers to represent costs, we use natural numbers, 
instead of real numbers, because the latter require more complexity to be computed. Moreover, the adoption of natural 
numbers does not restrict the expressive power of the model in practical cases.

In some cases, it is possible that the cost of a feature cannot be computed from its trace. For instance, before introducing 
a software module, it is necessary to install its prerequisites. So, we will introduce a new symbol ⊥ to represent this 
undefinedness. We consider the set N⊥ = N ∪ {⊥}, and therefore, we extend the arithmetic to this symbol as follows: 
∀x ∈N⊥ : x + ⊥ = ⊥ + x = ⊥. We also assume that x ≤ ⊥ for any x ∈N⊥ .

Definition 5. A cost function is a function:

c : F∗ ×F 
→N⊥ �
Example 1. Let us consider the term P = A; (B; � ∨ C; (D; � ∧ E; �)). The set of products of P are:

prod (P ) = {{A,B}, {A,C,E}, {A,C,D,E}}
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If we consider the order of the features within the products, we observe that A is always the first produced feature, then B
or C, and finally D and E. However, the formalism does not establish an order between D and E. Now we can consider the 
cost function:

c(s, x) =

⎧⎪⎨
⎪⎩

⊥ if x = B and A /∈ s

2 if x = D and E /∈ s

1 otherwise

Although there is no pre-established order for producing features D and E, producing D before E is more expensive than 
producing E before D. Let us note that the cost function defines values for traces that are not generated by the term P , for 
instance c(ε, B) or c(B, A). Cost functions can be independent from concrete terms, and this particular cost function will 
be used again in Example 2.

4.2. Cost transitions

We define the transition system to compute costs as a graph, where each node corresponds to a state of the labelled 
transition system, induced from a term P ∈ SPLA. Intuitively, each state corresponds to a phase of the product construction. 
Thus, we need to store, in each state, the components that have been incorporated to the product (the trace) and the 
current cost of the product. Each node is represented as a triple (P , s, n) where P is the SPLA under evaluation, s is a trace 
of features and n is a natural number indicating the current cost of the product.

Definition 6. Let P ∈ SPLA and let c be a cost function, the graph that represents the costs of P , with respect to c, is the 
least graph (N, −→) satisfying:

[ini] (P , ε, 0) ∈ N .
[cost1] If (Q , s, n) ∈ N , Q A−→ Q 1 and A �∈ s, then (Q 1, sA, n + c(s, A)) ∈ N and (Q , s, n) −→ (Q 1, sA, n + c(s, A)).
[cost2] If (Q , s, n) ∈ N , Q A−→ Q 1 and A ∈ s, then (Q 1, sA, n) ∈ N and (Q , s, n) −→ (Q 1, sA, n).

Rule [ini] indicates that initially there are no features computed, and therefore, the cost is 0. Rule [cost1] corresponds 
to the case when a new feature of an SPLA is computed, it is added to the trace s and the cost of producing this feature 
is added to the accumulated cost of the product. This condition applies only if A is not present in s. Rule [cost2] indicates 
that, if the feature has been previously produced, the cost does not change.

The following proposition indicates that, once an impossible configuration is reached, in terms of costs, it is pointless to 
continue computing features. In this case, this configuration is denoted as ⊥.

Proposition 1. Let P , Q ∈ SPLA and s = A1 · · ·Al ∈F∗ , then P s−→ Q iff there is n1, . . .nl ∈ N⊥ and Q 0, Q 1 . . . Q k such that P = Q 0 , 
Q = Q l and

(Q 0, ε,0) −→ (Q 1,A1,n1) −→ · · · −→ (Q l,A1A2 · · ·Al,nl)

Moreover, if there exists 1 ≤ i ≤ l such that ni = ⊥, then n j = ⊥ for i ≤ j ≤ k.

Lemma 1. Let P ∈ SPLA, c be a cost function, and s be a trace such that there are two computations:

P = P0
A1−→ P1 · · · An−→ Pn

and

P = Q 0
A1−→ Q 1 · · · An−→ Q n

with s = A1 · · ·An. Then if we consider the corresponding cost transitions:

(P0, ε,0) −→ (P1,A1, c1) · · · −→ (Pn, s, cn)

(Q 0, ε,0) −→ (Q 1,A1, c′
1) · · · −→ (Q n, s, c′

n)

then cn = c′
n.

Proof. It is only necessary to take into account that the cost only depends on the trace, it does not depend on the interme-
diate terms. �
Definition 7. Let us consider cost transitions that compute s. Let P ∈ SPLA, c be a cost function and s ∈ tr(P ). We define 
the cost of producing s, written tc(P , s), as follows:

(P0, ε,0) −→ (P1,A1, c1) · · · (Pn, s, cn) Pn
�−→ nil

then tc(P , s) = cn . �
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The cost of producing a product is not unique because this cost depends on the trace that generated it. So forth, we 
need to consider a set of costs for any product.

Definition 8. Let c be a cost function. Let us consider the function cSPLA : SPLA×P(F∗) 
→P(N⊥) defined as follows:

cSPLA(Q , p) = {
n

∣∣ n = tc(P , s) and [s] = p
} �

Let us note that if p /∈ prod (P ) we obtain cSPLA(P , p) = ∅. Therefore, we are able to compare two Software Product 
Lines. One product line is better than another if it can produce the same products at a lower cost.

Definition 9. Let P , Q ∈ SPLA and let c be a cost function. We say that P is better than Q with respect to c, written 
P ≤c Q iff prod (Q ) ⊆ prod (P ) and for any p ∈ prod (Q ) the following holds:

min{n | n ∈ cSPLA(P , p)} ≤ min{n | n ∈ cSPLA(Q , p)} �
The conditions p ∈ prod (Q ) and prod (Q ) ⊆ prod (P ) imply that the involved sets {n | n ∈ cSPLA(P , p)} and 

{n | n ∈ cSPLA(Q , p)} are not empty and therefore there exists the minimum of both sets.

4.3. New rule [req2]

At this point, it is worth discussing the change in the operational semantics (Fig. 3) with respect to the original opera-
tional semantics in [8]. Thus, [req2] rule has been changed, the old rule was the following:

[req2′] P A−→ P1

A⇒ B in P A−→ P1 ⇒ B

Rule [req2′] presents some problems when computing costs, as the following example illustrates.

Example 2. Let us consider the cost function in Example 1 and the term P = B ⇒ A in B; �. By applying the rules we 
obtain the transitions:

(B⇒ A in B;�, ε,0) −→ (� ⇒ A,B,⊥)

Thus, the cost of computing the product [BA] is ⊥.

Intuitively, the requires operator establishes a pre-condition between features. More precisely, B ⇒ A in P indicates that 
A is a pre-condition of B. This is the reason of changing the old rule [req2′] by the new rule [req2].

This change is not very important from a theoretical point because, as Proposition 2 shows, it does not alter the original 
semantics. In order to justify this assessment we consider two transition systems: one with the old rule [req2′] and the 
new one presented in this paper rule [req2]. In order to differentiate the transition systems, the transitions of the old 
one are denoted by P A−→o Q , and the transitions of the new one are denoted by P A−→n Q . In the following Lemma 2
and Proposition 2, we consider prodn (P ) and trn(P ) as the set of products and traces of P obtained by using the new 
transition system, while prodo (P ) and tro(P ) correspond to those sets computed by following the old transition system 
in [8].

Lemma 2. Let P ∈ SPLA, A, B ∈F and s ∈F∗ be a valid trace.

1. If s ∈ tro(A ⇒ P) then either s ∈ tro(P ) and A ∈ [s] or there exists s′ ∈F∗ such that s = s′ · A and s′ ∈ tro(P ).
2. If [s] ∈ prodo (P ) and A ∈ [s] then [s] ∪ {B} ∈ prodo (A⇒ B in P ).

Proof. Let us consider the first part of the Lemma 2. Let us proceed by induction on the length of s (|s|). The case when 
|s| = 0 is not possible because there are no rules allowing the mandatory operator produce the � symbol. Thus, the base 
case is |s| = 1. The only possibilities is to apply rules [mand1] to obtain P ⇒ A A−→n �, or [mand2] to obtain P ⇒ A A−→n

P1
�−−→n nil. In the first case it is enough to consider s′ = ε to obtain the result and in the second case s = A and 

A ∈ tro(P ).
Let us consider |s| > 1. Thus, there are 3 cases depending on the first rule applied. If the first rule is [mand1] the result 

is obtained as before. If the first rule is [mand2], we have P ⇒ A A−→n P1, and s = A · s1, where s1 ∈ tro(P1). Because of the 
premise of [mand2], we have P A−→n P1, so s ∈ tro(P ). Finally, if the first rule is [mand3], we obtain P ⇒ A B−→n P1 ⇒ A. 
Then s = B · s1 with s1 ∈ tro(P1 ⇒ A). Because of the premise of the rule, we obtain P B−→n P1, and by the induction 
hypothesis we obtain the result.

The proof of second part is just a consequence of the soundness and completeness result of the denotational semantics 
(Theorem 1) in [8]. �
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Table 1
Cost function.

c A B C D E

ε 1 1 1 1 1
A ⊥ 22 20 125 134
AC 12 15 ⊥ 13 2
ACE ⊥ 11 ⊥ 332 ⊥
ACD ⊥ 132 ⊥ ⊥ 581

Proposition 2. Let P ∈ SPLA, then prodn (P ) = prodo (P ).

Proof. First let us consider p ∈ prodo (P ), by definition there is some s such that s ∈ tro(P ) and p = [s]. We prove that 
p ∈ prodn (P ) by induction on the length of s. If |s| = 0 then P �−−→ nil, since rule [req2]does not enable that transition, 
so we obtain P �−−→n nil. So, s ∈ trn(P ) and therefore p ∈ prodn (P ).

Let us consider |s| > 0, and the rule applied to derive the first transition. For all the cases, but when the rule is [req2′], 
the result is trivial by induction since these rules coincide in both transition systems. Let us suppose that the rule to 
obtain the first transition of s is [req2′]. In this case we obtain: P = A ⇒ B in P1, P1

A−→o Q , P A−→o Q ⇒ B, s = A · s1
(where s1 ∈ tro(Q ⇒ B)) and p = {A} ∪ [s1]. Since s1 ∈ tro(Q ⇒ B), by Lemma 2.1, there are two cases (1) s1 ∈ tro(Q )

and B ∈ [s1] or (2) there exist s′
1 such that s′

1 = s1 · B and s′
1 ∈ tro(Q ). In case (1), by the induction hypothesis we obtain 

s1 ∈ trn(Q ). Then B · s1 ∈ tro(B; Q ), since B ∈ [s1] we obtain [B · s1] = [s1], so [s1] ∈ prodn (B; Q ). In case (2), by induction 
s′

1 ∈ trn(Q ), and then B · s′
1 ∈ trn(B; Q ) and [s1] = [s′

1] ∪ {B}. Thus, we can conclude also in this case [s1] ∈ prodn (B; Q ). 
In the new transition system, we can apply [req2] to obtain P A−→n B; Q , so {A} ∪ [s1] ∈ prodn (P ).

Now let us consider p ∈ prodn (P ), so there exists a trace s ∈ trn(P ) such that p = [s]. We show that p ∈ prodo (P )

by induction on the length of s. The case base is just as the previous one. The inductive case is also made by considering 
the first rule applied to derive s, and again all cases are trivial except the case when the first rule applied is [req2′]. In 
this case we have that P = A ⇒ B in P1, P1

A−→n P ′
1 and P B−→n A; P ′

1. Now we obtain that there exist a trace s1 such that 
s = B · A · s1 and [A · s1] ∈ prodn (P1). By the induction hypothesis we obtain [A · s1] ∈ prodo (P1) and then, by Lemma 2.2, 
[s] = [A · s1] ∪ {B} ∈ prodo (A⇒ B in P1). �

With rule [req2], we are able to compute the costs of the products of the term in Example 2. Let us remark that a 
product can be obtained with different traces: P = {A, B} = [AB] = [BA]. First, let us consider the following lemma, which 
establishes that the cost of producing a trace does not depend on the intermediate states of the computation producing the 
trace s.

4.4. Rules execution example

In this section we present an example to show how cost is managed in our framework. In order to show its applicability, 
we model a Software Product Line that consists of five functional components (A, B, C, D and E). We consider the SPLA
term from Example 1:

P = A; (B;� ∨ C; (D;� ∧ E;�))

We have analyzed this term by using the cost function generated from the values shown in Table 1.
This table shows the cost for some of the possible values in F∗ × F . We define c(s, x) = ⊥ for the rest of the pairs 

(s, x) ∈ F∗ × F that do not appear in this table. Let us note that the cost function gives values to some possibilities not 
allowed by the term P . For instance c(AC, B) = 15, this indicates the possible value of producing B if previously we have 
produced A and C in general. This cost function could also be used in a term like Q = A; (B ∧ C), but in the case of the 
term P above this concrete value is never computed because in P the features C and B are never in the same product.

Figs. 4 and 5 describe how P is processed by using the operational semantics presented in Fig. 3, where the cost 
processing rules are also applied as long as the semantic rules are being computed.

In this example, the first processed feature is Feature A using [feat] rule. Once this feature has been processed, we apply 
rule [cost1]. Thus, we obtain the transition Stage1:

(A; (B;� ∨ C; (D;� ∧ E;�)), ε,0) −→ (B;� ∨ C; (D;� ∧ E;�),A,1)

Next, we apply rule [cho1] to obtain Stage2:

(B;� ∨ C; (D;� ∧ E;�),A,1) −→ (�,AB,23))

and finally we apply [cho2] to obtain Stage3:

(B;� ∨ C; (D;� ∧ E;�),A,1) −→ (D;� ∧ E;�,AC,21)
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Fig. 4. FODA cost-related example 1/2.

Fig. 5. FODA cost-related example 2/2.

As a result, we confirm that the cost of the trace AB is 23. Since this is the only way to obtain the product {A, B}, its 
cost is 23.

The term D; � ∧ E; � has two outgoing transitions: one obtained from applying rule [con1], which leads to the term 
� ∧ E, and the other applying rule [con2], leading to the term D. The term � ∧ � obtains the cost transition Stage6 (see 
Fig. 5):

(D;� ∧ E;�,AC,21) −→ (� ∧ E;�,ACD,34)

and Stage4:

(D;� ∧ E;�,AC,21) −→ (D;� ∧ �,ACE,23)

From this last term we can apply two rules: [ofeat2] and [con2]. The first one leads to �, where we obtain the product 
{A, C, E} with cost 23. This is the only way to obtain this product. From the second rule we obtain the cost transition Stage5:

(D;� ∧ �,ACE,23) −→ (� ∧ �,ACED,355)

As a result, we obtain the product {A, C, D, E} with cost 355. In this case this is not the only way to produce it because 
if we go back to the cost transition Stage6, by applying rule [con2], we obtain the cost transition:

(� ∧ E;�,ACD,34) −→ (� ∧ �,ACDE,615)

In this case, we obtain the product {A, C, D, E} with cost 615, and therefore, the cSPLA function is defined as follows:

p cSPLA(P , p)

{A,B} {23}
{A,C,E} {23}
{A,C,E,D} {355,615}

Let us consider the SPLA terms R and Q defined as follows:

Q = A; (B;� ∨ C; (D;E;� ∨ E;�)) R = A; (B;� ∨ C;E;D;�)

It is easy to check that prod (P ) = prod (Q ) = prod (R). However in P , the subterm D; � ∧ E; � indicates that there 
is no pre-established way to produce features E and D. On the contrary, this order has been established in Q and R . Since 
producing E before D is cheaper than producing D before E, we obtain:

R ≤c P ≤c Q

This indicates that the SPL represented by R is preferable to P and Q , and P is preferable to Q .
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5. Opscode Chef run-list calculation

In this section we present an elaborated example extracted from a real context. This example shows how to calculate, us-
ing our formal framework, the minimum cost run-list for the nodes inside a Chef server infrastructure given an organization 
context.

5.1. Product line organization

The main purpose of this model is to create valid run-lists for a set of Chef nodes. The organization requirements are 
described next.

• There are two environments: production environment and test environment. In order to model this condition we need 
to add constraints to our variability model, which are taken from the system configuration. The syntax of the environ-
ment description is shown below:

name "environment_name"
description "environment_description"
cookbook OR cookbook_versions "cookbook" OR "cookbook" => "cookbook_version"
default_attributes "node" => { "attribute" => [ "value", "value", "etc." ] }
override_attributes "node" => { "attribute" => [ "value", "value", "etc." ] }

In this case we can set up the environment requirements, which overrides attributes from others recipes. The 
Production environment is presented as follows:

name "production"
description "Production environment"
cookbook_versions({

"nginx" => "<= 1.1.0",
"mysql" => "<= 4.2.0",
"apache" => "= 0.4.1"

})
override_attributes ({

"apache" => {
"listen" => [ "80", "443" ]

},
"mysql" => {

"root_pass" => "XXXXX"
}

})

The Test environment is shown below:

name "test"
description "Test environment"
cookbook_versions({

"nginx" => "<= 2.1.0",
"mysql" => "<= 6.2.0",
"apache" => "= 1.4.1"

})
override_attributes ({

"apache" => {
"listen" => [ "8080", "4430" ]

},
"mysql" => {

"root_pass" => "XXXXX"
}

})

• There are 2 nodes: a Web server and a database server for each environment. In order to model this condition, once we 
have our Chef system configured, we bootstrap the chef client as follows:

knife bootstrap web.example.com -r ’role[webserver]’ -e Production
knife bootstrap db.example.com -r ’role[database]’ -e Production

This configures the recipes from the webserver role into web.example.com by using the attributes from the Production
environment. Similarly, it sets db.example.com as a database server in the production environment.

• The nodes have to be monitored. In order to achieve this, we need to change the bootstrap command to:

knife bootstrap web.example.com -r ’role[webserver]’,’role[monitor]’ -e Production
knife bootstrap db.example.com -r ’role[database]’,’role[monitor]’ -e Production

In this case we add the monitor role to the Chef nodes.
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• The Web server and the database server must run in separate physical nodes. This condition is inherent to the user 
requirements. This will be achieved only by keeping the Web server and the database roles separate from each other 
when the Chef client is being bootstrapped.

• In the production environment the database server must be MySQL and the monitor software must be Nagios. In order 
to achieve this, we can access environmental variables from recipes. Once the variables are set, we are able to execute 
the right actions.

if node.chef_environment == "production"
# do something, i.e. Install MySQL, Nagios.

else
# do other thing.

end

Also, we need to model how variability and commonality interact with all functional and non-functional components 
inside Chef architecture. Given the Chef architecture presented in Fig. 2, we take the relationships that we need to model 
into the product line environment.

• A Chef system can have 0 or more Roles, 0 or more cookbooks and at least 1 environment.
• A Node can have only 1 environment.
• A Node can have 0 or more Roles.
• A Node can have 0 or more cookbooks.
• A Role can have 0 or more cookbooks.
• A Node has only 1 Run-list.

#
# Cookbook Name:: installers_custom
# Recipe:: sqlserver
#
#Steps
#1- Download ISO according OS (w2008 or w2012) if not downloaded.
#2- Unzip ISO if not unzipped.
#3- Install SQL Server if not installed.
#
#Step 1
case node[’platform’]
when ’windows’

require ’chef/win32/version’
windows_version = Chef::ReservedNames::Win32::Version.new
if windows_version.windows_server_2008_r2?

unless File.exists?(’C:/en_sql_server_2008.iso’)
remote_file ’C:/en_sql_server_2008.iso’ do

source ’http://software.example.com/en_sql_server_2008.iso’
owner ’Administrator’

end
end

#Step 2 unless File.exists?(’C:/SQL_SERVER’)
batch ’unzip SQL Server’ do

code <<-EOH
7zG x -y "C:/en_sql_server_2008.iso" -o"C:/SQL_SERVER"

.

.

.

#Step 3
if File.exists?(’C:/SQL_SERVER’)

batch ’unzip SQL Server’ do
code <<-EOH
"C:/SQL_SERVER/setup.exe" /QUIET
EOH

end
end

Thus, in order to create a variability model, we merge these relationships and conditions. This information has been 
translated directly to an FODA diagram (see Fig. 6). This diagram shows the run-lists R1, R2, R3, R4, R5 and R6. For 
instance, the possible content of R4 having the instructions to install SQLServer, depends on the operating system configured 
in previous listing. These run-lists are a sequential list of mandatory recipes that do not have any influence in the variability 
model, and therefore, these run-lists have to be removed from our analysis. These run-list will be taken into account when 
the cost model is analyzed.
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Fig. 6. FODA Opscode Chef feature diagram.

run-list =
N1 ⇒ W in (

N2 ⇒ D in (

P⇒ MS in (

P⇒ NA in (

W �⇒ D in (

S; (
R; (
W; (AP;� ∨ NG;�)

∧
D; (MS;� ∨ SS;�)

∧
M; (NA;� ∨ NR;�)

)

∧
E; (P;� ∨ T;�)

∧
N; (N1;� ∨ N2;�)

)

)

)

)

)

)

S : Chef Server
R : Roles
E : Environments
N : Nodes
P : Production
T : Test
W : Web server
D : Database Server
M : Monitoring service
AP : Apache
NG : Nginx
MS : MySQL
SS : SQLServer
NA : Nagios
NE : New Relic
N1 : Node 1
N2 : Node 2

Fig. 7. FODA to SPLA term.

The SPLA specification has been gathered from the diagram shown in Fig. 6. Thus, this specification can be translated 
for creating the model defined in Fig. 7. Moreover, the ChefServer, Roles, Cookbooks and Environments are parts 
of the domain analysis of the SPL, but they do not necessarily affect the functional behavior of the products as they 
represent category features. Consequently, they can be removed without changing the variability model. The term with this 
simplification is obtained from Fig. 7. This simplification have a great impact on the overall performance of our tool, as we 
will see in Section 6.

5.2. Features cost specification

Once the variability model of our example has been defined, we are able to build the cost model. For the sake of 
simplicity we describe the model for the database node inside the Production environment.

The cost model is defined by taking into account the complexity of the recipes associated to a node. The variability model 
does not restrict the order in which the features Nagios and MySQL are introduced in the product. However, this order is 
important. For example, if we introduce the feature Nagios before the feature MySQL, the following process is executed: 
the feature MySQL must be monitored, once the feature MySQL is introduced, the recipes associated to the feature Nagios
must be recalculated. On the contrary, these recipes do not have to be recalculated if we introduce the feature MySQL
before the feature Nagios. Similarly, the same occurs with features Nagios and Apache. Finally, we reflect the fact that 
the Web server and the Database server must be in different nodes by indicating that the cost of introducing the feature 
Apache (resp. MySQL) when the feature MySQL (resp. Apache) has previously been included is ⊥.
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c(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rule1 : 7 if x = MySQL and Nagios ∈ s

Rule2 : 7 if x = Apache and Nagios ∈ s

Rule3 : 4 if x = Nagios and MySQL ∈ s

Rule4 : 4 if x = Nagios and Apache ∈ s

Rule5 : ⊥ if x = Apache and Mysql ∈ s

Rule6 : ⊥ if x = Mysql and Apache ∈ s

Rule7 : 0 otherwise

Rule1: MySQL is being computed and Nagios was already computed. This rule will determine that 7 recipes must run in 
order to have the MySQL service monitored with Nagios, as the monitoring software was previously installed.

Rule2: Apache is being computed and Nagios was already computed. Same cost as rule Rule1, 7 recipes must run in 
order to have the Apache service monitored.

Rule3: Nagios is being computed and MySQL was already computed. In this case the execution is less expensive as we 
need to run only 4 recipes to have the MySQL service monitored.

Rule4: Nagios is being computed and Apache was already computed. The same cost as rule Rule3 as we need to run 
only 4 recipes to have the Apache service monitored.

Rule5 and Rule6: The Web server and database server must be in different nodes.
Rule7: The cost of producing any other feature in any other order is 0.

5.3. Execution and computing results

This section describes how an SPLA term is computed. This example generates a trace tree containing all valid and 
invalid states. These traces cannot be graphically represented in this paper due to their size. In this case we show some 
representative traces of tr(run-list) for the node containing the database in the production environment.

tr(run-list) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

. . .

[‘Node2’, ‘Prod’, ‘DB’, ‘MySQL’, ‘Monitor’, ‘NewRelic’, ‘Nagios’]
[‘Node2’, ‘Prod’, ‘Monitor’, ‘DB’, ‘Nagios’, ‘MySQL’]
...

[‘Node2’, ‘Prod’, ‘Monitor’, ‘DB’, ‘NewRelic’, ‘MySQL’, ‘Nagios’]
. . .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Once the costs of the traces have been calculated, we obtain the corresponding products with their associated costs.

p cSPLA(P , p)

· · · · · ·
{Node2,Prod,DB,MySQL,Monitor,NewRelic,Nagios} {4,7}
{Node2,Prod,Monitor,DB,Nagios,MySQL} {4,7}
· · · · · ·

It is important to remark that the run-list creation must be idempotent. This means that no matter how many times 
we execute chef-client, the system output is always the same. For instance, if a recipe install MySQL, no matter how many 
times you execute chef-client, the first time it is executed, MySQL is installed and subsequent executions will be omitted 
as the node is already in a desired state. This in the case when it is done in a natural way as this problem is treated as a 
deterministic state machine.

6. Implementation

This section presents our implementation that deals with the formal framework presented in this paper. The tool can be 
downloaded from the project main page http :/ /simba .fdi .ucm .es /at. This software is licensed under GPL v3 (more details in 
http :/ /www.gnu .org /copyleft /gpl .html).

This tool has been developed completely in Python and it generates a Finite State Machine to model all valid states. 
While features are computed, the cost and the trace are stored in each term for further use. The file http :/ /simba .fdi .ucm .
es /at /splacris /splacris .zip contains the API documentation, a README.txt file with instructions on how to use the program, 
example files and the core tool.

6.1. Considerations

Our implementation suffers one of the classical computational problems of this kind of tools: the calculation of all 
possible valid traces from the variability model. One of the main problems is the behavior of the parallel operator ∧: 
[con1], [con2], [con3] in the operational semantics.

http://simba.fdi.ucm.es/at
http://www.gnu.org/copyleft/gpl.html
http://simba.fdi.ucm.es/at/splacris/splacris.zip
http://simba.fdi.ucm.es/at/splacris/splacris.zip
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run-listop =
N1 ⇒ W in (

N2 ⇒ D B in (

P ⇒ M S in (

P ⇒ N A in (

W �⇒ D in (

W; (AP;� ∨ NG;�)

∧
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∧
M; (NA;� ∨ NR;�)

∧
P;� ∨ T;�
∧
N1;� ∨ N2;�

)

)

)

)

)

P : Production
T : Test
W : Web server
D : Database Server
M : Monitoring service
AP : Apache
NG : Nginx
MS : MySQL
SS : SQLServer
NA : Nagios
NE : New Relic
N1 : Node 1
N2 : Node 2

Fig. 8. SPLA optimized term.

The traces generated from P ∧ Q must have the features of P and Q in all possible combinations. This creates a 
combinatorial explosion of traces, since the combinations of K features without repetition has K ! different combinations.

In order to reduce the effect of this combinational explosion, there are some considerations that can be taken into 
account when the product line is being designed in order to optimize the execution time.

A way to handle this expected behavior is to prune the traces tree while the terms are being computed. This can be 
achieved by using several approaches, like Costs Thresholds. In this case, products cannot be produced with costs higher than 
HC or lower than LC . We can also prune traces by adding bottoms (⊥) in the Cost function so forth those traces can never 
end in a valid product. Also the terms are independent as they have the cost information inside them, hence the application 
can be developed to support distributed computing, in order to share the computing effort in a distributed system.

6.1.1. Feature model optimization
FODA diagrams have a very strict representation in which all functional and non-functional parts of the product line 

organization must be represented. When we compute a parallel operator in an SPLA term, there is a performance penalty 
each time a parallel feature is included in the model. This is an inherent condition of the use of the parallel operator in the 
SPLA operational semantics.

Thus, using our formal framework we increase the model’s flexibility as we are not forced to have optional or mandatory 
features inside a parallel relationship, we can also have different SPLA terms inside. These types of conditions enable us to 
optimize the number of features inside a feature diagram. Let us recall the example in Section 5. We first presented the first 
term run-list in Fig. 7 that results from the FODA diagram in Fig. 6. As we have previously presented, the products of this 
term contain the features ChefServer, Roles, Cookbooks and Environments that are part of the domain analysis 
of the SPL. However, they do not necessarily affect the functional behavior of the products as they represent categories of 
features. Thus, we presented the SPLA term run-listop in Fig. 8 where these features are removed. The set of products of 
both terms are essentially the same because we removed only features that represent categories.

This simple modification in the model has great impact on performance. The computation of the term run-list gener-
ates 97 648 valid products taking 2340.49 seconds, while the computation of the run-listop generates 10 572 valid products 
taking 491.41 seconds. This result shows that a correct analysis of the product line organization can affect directly the per-
formance of the algorithm execution. In this particular case by removing these non-functional features the time performance 
is increased by 79% and the number of products computed are reduced by 89.1%.

6.1.2. Distributed computing
SPLA terms can be computed in a distributed system in a natural way. In this case all system states can be treated as 

separate components because their computation does not rely on other processing terms. For instance, let us consider a 
term like the following:

P = (F 1; P 2) ∨ (F 3; P 4) ∨ (F 2; ((F 5; P 5) ∨ (F 6; P 6)))

where P 2, P 4, P 5 and P 6 are valid SPLA terms. These terms may represent a terminal state in which a valid trace will be 
computed. Computing these terms in a distributed system can be achieved in a natural way as all terms are independent 
from each other. Also, if we store in the object that represents an SPLA instance the term, the previously computed trace 
and the cost to compute that trace, then we have self-contained all the information to distribute the computing effort 
among a distributed system. We refer to the implementation, available at http :/ /simba .fdi .ucm .es /at /splacris /splacris .zip.

In order to execute our implementation in a distributed system we use SCOOP (Scalable COncurrent Operations in 
Python) [49] which is a Python framework for automatically distributing dynamic tasks. In this case, we recursively spawn 

http://simba.fdi.ucm.es/at/splacris/splacris.zip
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1 Worker 2 Workers 4 Workers 8 Workers 16 Workers 32 Workers

1 Node 2010.44763303 1060.80047798 586.014445066 543.712262154 521.616870165 521.292215109
2 Nodes 2059.06947899 1046.87119007 575.115453959 296.285589933 366.384442091 341.007520199
4 Nodes 2031.25184584 1093.52087283 586.344302893 320.010899067 300.745616913 382.748430014
8 Nodes 2207.35427213 1143.951792 576.370896101 495.507214785 308.374300957 287.340030909

Fig. 9. Cluster execution times for 1, 2, 4 and 8 nodes; and 1, 2, 4, 8, 16 and 32 workers.

a list of substates into a set of SCOOP workers, which are automatically distributed among the available resources using 
dynamic load balancing. A worker is a computing instance used to execute a task. Multiple workers are distributed in a 
computing pool in order to complete a task and in one computing node can be one or more workers.

We have tested our implementation in an 8-node cluster, where each node has the following configuration:

Operating System: Ubuntu 14.04-trusty
RAM: 4 GB
Processor: Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz
CPU cores: 4

The SPLA term used to be computed with our distributed implementation is run-list (Fig. 7). This term generates a total 
of 97648 valid products. Fig. 9 shows the execution times when computing all the products for run-list for all the different 
configuration between workers and nodes. The best results are obtained by using 8 nodes and 32 workers (287.34 seconds), 
although the gain is not very relevant with respect to simpler configurations. For instance, the gain of the configuration with 
8 nodes and 32 workers with respect to the one with 4 nodes and 16 workers is only 13.41 seconds (4.67% of performance 
improvement).

6.1.3. Thresholds
Thresholds can be used as a solution to minimize the effort to compute an SPLA term. In this case, we are able to 

discard a trace that is beyond the threshold while we are computing it. For example, let us consider the term

P = F1;� ∧ F2;� ∧ F3;� ∧ F4;� ∧ F5;� ∧ F6;�)

where the cost of producing a feature is always 1. In this case the total cost of a product will be equal to the number of 
features of the product.

In this example P generates 1957 valid products taking a total execution time of 6.02 seconds. These results are pre-
sented in Fig. 10 (left), without taking care about thresholds.

Next, we define a minimum threshold of 1 and a maximum threshold of 2. Due to we defined that the cost of computing 
a feature is equal to 1, only products with one or two features are generated. In this case, the number of valid products is 
36, which it is displayed in Fig. 10 (right) with an execution time of 0.45 seconds.

It is important to note the spaces between the dots in Fig. 10 (right). These spaces correspond to the time spent to 
generate the next valid trace (product). In order to generate a trace, the production cost must be between 1 and 2, while 
all the other products will not be valid. Once the production cost exceed the threshold, the computing of that branch will 
end and no more product will be computed from there.
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Fig. 10. Cumulative time graphic for computing products without thresholds (left) with thresholds Min:1 Max:2 (right).

7. Conclusions and future work

In this paper, we have extended the basic SPLA representation to handle costs. Benefits from this extension can be 
applied in many decision-making processes. An important characteristic of this extension is that the order in which the 
features are introduced is important. Thus, products with the same features can have different costs due to the ordering of 
features. This characteristic can be very relevant for a number of software projects.

We have presented a tool that supports the theory in this paper. This tool has the typical combinatorial problems of 
the parallel operator in process algebras. We have outlined ways to optimize future implementations and we have shown 
practical examples in which SPLA flexibility helps to optimize the product line.

Our future research work includes the introduction of probabilities. We think that the inclusion of probabilities opens a 
wide range of applications to SPLA. For instance, let us consider an SPL where the features correspond to software modules 
and the probability indicates the probability of a feature being included in a product. Thus, it is reasonable to spend more 
time by testing the modules with greater probabilities.

The transitions of our model are similar to those in [30], so it would be possible to use mature analysis tools for model 
checking as Uppaal Cora [33]. However, the main problem is the possible state explosion when transforming terms from our 
formalism into a priced automaton. A way to achieve this is by using simulation semantics as we indicate in the following 
paragraph.

Process algebras handle situations in which quantitative analysis on dynamic properties are studied [38]. We take the 
advances of process calculi to model a novel characteristic on SPLs, the order in which features are computed. This will 
allow to model conditions in which the final cost of the product depends on the order of the computed features.

During last decades a huge amount of results have been developed in the process algebra community. We hope that 
some of these works can be applied in the analysis of SPLs. In a recent work [50], the authors have shown that the 
number of states of a specification can be dramatically reduced when a simulation relation is applied. We are planning 
to adapt this result in our context: We think that it could be possible to generate a simplified version of an SPLs that 
simulates the original one; then other kind of analysis could be performed in the simplified version.
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