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We introduce a probabilistic extension of our previous work SPLA: a formal framework 
to specify and analyze software product lines. We use probabilistic information to identify 
those features that are more frequently used. This is done by computing the probability of 
having a feature in a specific software product line, from now on SPLAP . We redefine 
the syntax of SPLA to include probabilistic operators and define new operational and 
denotational semantics. We prove that the expected equivalence between these two 
semantic frameworks holds. Our probabilistic framework is supported by a set of scripts 
to show the model behavior. We briefly comment on the characteristics of the scripts and 
discuss the advantages of using probabilities to quantify the likelihood of having features 
in potential software product lines.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

During the last years, software product lines (in short, SPLs) have become a widely adopted mechanism for efficient 
software development. The Carnegie Mellon Software Engineering Institute defines an SPL as “a set of software-intensive 
systems that share a common, managed set of features satisfying the specific needs of a particular market segment or 
mission and that are developed from a common set of core assets in a prescribed way” [1]. Basically, the main goal of SPLs
is to increase the productivity for creating software products, which is achieved by selecting those software systems that 
are better for a specific criterion (e.g. a software system is less expensive than others, it requires less time to be processed, 
etc.). Currently, different approaches for representing the product line organization can be found in the literature, such as 
FODA [2], RSEB [3] and PLUSS [4,5].

Graphical approaches are commonly used to model SPLs. Feature Oriented Domain Analysis [2] (in short, FODA) is a 
well-known graphical approach for representing commonality and variability of systems. Fig. 1 shows all FODA relationships 
and constraints. Although this kind of solutions is useful to easily model SPLs, a formal approach is needed for automatizing 
the analysis process and detecting errors in the early stages of the production process. It is therefore required that graphical 
representations are translated into mathematical entities [6]. In this case, the original graphical representation of FODA must 
be provided with a formal semantics [7]. This issue is solved by using SPLA [8], a formal framework to represent FODA
diagrams using process algebras [9]. SPLA can be applied not only to FODA, but also to represent other feature-related 
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Fig. 1. FODA Diagram representation.

problems and variability models. Additionally, some of the existing formal approaches use algebras and semantics [8,10–12], 
while others use either propositional or first order logic [13–17].

It is worth to mention that the order in which features are processed to create a specific product is directly reflected in 
its final cost. In a previous work we introduced costs in our formal framework for representing the required effort to include 
a feature to the product under construction [18]. This cost may represent different aspects of a feature, such as lines of code 
of a given software component or effort, in human hours, to include a software component into a project, just to name 
a few, that usually depend on the target of the product line organization. Thus, efficiently processing features for building 
high quality products becomes a time-consuming and challenging task. Unfortunately, there are some situations where the 
representation of the SPL generates a combinatorial explosion, making unpractical to analyze all possible combinations. 
In order to alleviate this issue, in this paper we propose a probabilistic extension of our previous work SPLA. We use 
probabilistic information to identify those features that are more frequently used by computing the probability of having a 
feature in a specific SPL. Hence, the computation focuses on those features with a high probability to be present in the final 
product, reducing the total computation required for generating valid products, and the proposed probabilistic extension is 
tested through a Python implementation.

The main contributions of this work can be summarized as:

– A model that uses probabilistic information to determine the probability of having a feature in a specific SPL. In contrast 
with our previous work [8,18], which mainly focuses in defining an algebraic language to describe Software Product 
Lines and using a cost model for comparing valid products, this approach is targeted to identify those features that are 
more frequently used to generate a product. Basically, the idea is to focus on those features with a high probability to 
be present in the final product and, therefore, reducing the required processing to generate valid products.

– It may be not feasible to compute all the products in a SPL. But if we are interested in a particular feature, we can 
compute the probability of that feature. The introduction of the notion of hiding sets of features helps us to achieve 
this. If we want to compute the probability of A, we hide the features that do not affect the processing of A for being 
part of a valid product. This analysis allows optimizing the practical application of the probabilistic extension, as it 
allows us to remove or hide a set of features which does not interfere with the calculus of the probability for a specific 
feature.

– A thorough empirical study, using different configurations to generate a wide-spectrum of variability models. The study 
has been carried out in order to show the applicability and scalability of our approach. These variability models have 
been generated using BeTTy [19].

The rest of the paper is structured as follows. Section 2 introduces the related work on probabilistic analysis of feature 
models. Section 3 presents our probabilistic language SPLAP . Section 4 is used to prove the equivalence between the 
operational and denotational semantics. In section 5 we extend our language to define how sets of features can be hidden. 
This new hidden operator allows to improve the execution of the probabilistic extension execution, as it allows to remove 
those features that are not required to calculate the probability. Section 6 presents an empirical study that has been carried 
out by using our implementation of the denotational semantics for the probabilistic extension. The threats to validity of 
our empirical study are discussed in Section 7. Finally, section 8 presents our conclusions and some research lines for the 
upcoming work.

2. Related work

The study of probabilistic extensions of formal methods can be dated back to the end of the 1980s. This is already a 
well established area, with many extensive contributions to include probabilistic information in classical formalisms (I/O 
Automata, Finite State Machines, (co-)algebraic approaches, among others) [20–27]. Although the addition of probabilistic 
information to model SPLs is relatively new, different proposals can be found in the current literature [28–31]. In particular, 
a very recent work shows that statistic analysis allows users to determine relevant characteristics, like the certainty of 
finding valid products among complex models [31]. Another approach focuses on testing properties of SPLs, like reliability, 
by defining three verification techniques: a probabilistic model checker on each product, on a model range, and testing the 
behavior relations with other models [28]. Some of these approaches describe models to run statistical analysis over SPLs, 
where pre-defined syntactic elements are computed by applying a specific set of operational rules [29,30]. These models 
demonstrate their ability to be integrated into standard tools, like QFLan [30], Microsoft’s SMT Z3 [32] and MultiVeStA [33].
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Other works focus on describing use cases for analyzing the probability of finding features inside valid products [31]. It 
is true that variability models computing can create combinatorial problems depending on how the models are computed 
and how the models are represented, which is directly correlated to the information to be generated [31]. This analysis 
makes the process of studying product lines a complex computational task.

An interesting aspect of SPLAP is that any of the research articles in the literature manage to describe in their work 
the use of multisets. Also, they do not explicitly work on the translation of FODA to represent probabilities and they do 
not introduce the notion of hiding those not needed features to calculate the probability of a specific feature. There are 
proposals that allow the introduction of probabilities in feature models. For instance [26] uses Markov decision processes 
to represent the behavior of products, whereas in [34], the behavior of the system is represented by Markov Chain. The 
variability on those formalisms is modeled existing tools like FODA or just propositional logic to describe their products. On 
the contrary, our contributions focus on defining a probabilistic language to describe the products. We use the probabilities 
to quantify how relevant is a product of a feature within the product line.

In previous years, the studies focusing the analysis of variability models - and their practical applications - with realistic 
use cases have demonstrated that those uses cases do not describe such complex models [35,36]. Thus, these can be pro-
cessed in the practice without much algorithmic sophistication or complex analysis. In particular, the study of expending 
machines has been widely used across the whole literature to show practical and real usages of product line modeling [36]. 
Moreover, it is described that those models for defining products lines does not always apply to the formal definition and 
description of software product lines, as they are not directly related [17,37,38]. Recent implementations, like ProFeat [39], 
allow to help in the verification of requirements for families of probabilistic systems. These implementations, together with 
PRISM [40], use their own language and are based on Markov decision processes.

3. SPLAP : syntax and semantics

In this section we introduce our language. In addition to present its syntax, we define an operational semantics and a 
denotational semantics. In the next section we will show the equivalence between these two semantic frameworks.

3.1. Syntax and operational semantics

Following our previous work [8,18], we will consider a set of features. We denote this set by F and consider that A, B, C
range over F . We have a special feature � /∈F to mark the end of a product. We consider a syntax similar to SPLA, where 
probabilities are introduced both in the choice operator P ∨p Q and in the optional feature operator A;p P . We do not allow 
degenerated probabilities, that is, for all probability p we have 0 < p < 1.

The operators syntax is defined as in [8,18]. In order to define the syntax, we need to fix the set of features. From now 
on F denotes a finite set of features and A, B, C. . . denote isolated features.

In this research article, like in the previous definition of SPLA [8,18], we define and express formally that even if a feature 
is represented with a mandatory relationship in the feature model, it might not be computed in the final set or trace of 
valid products. This is because of the cross tree constraints presented in the formal definition of SPLA, more in specific, the 
[excl2] and [excl3] rules. When these rules are computed, the affected features will be marked for hiding. This is carried 
out by rules [hid1] and [hid2] from Fig. 6. So forth, the features disappear in the valid products traces after computing the 
feature model.

In the syntax of the language there are two sets of operators. On the one hand there are main operators, such as · ∨ ·, 
· ∧ ·, A; ·, A; ·, A ⇒ B in ·, A � B in ·, that directly correspond to relationships in FODA diagrams. On the other hand, we 
have auxiliary operators, such as nil, �, ·\A, · ⇒ A, which we need to define the semantics of the language.

Definition 1. A probabilitistc SPL is a term generated by the following BNF expression:

P ::= � | nil | A; P | A;p P | P ∨p P | P ∧ P |
A� B in P | A⇒ B in P | P\A | P ⇒ A

where A, B ∈F and p ∈ (0, 1). The set of terms of the algebra will be denoted by SPLAP . �
In order to avoid writing too many parentheses in the terms, we assume left-associativity in binary operators and the 

following precedence in the operators (from higher to lower priority): A; P , A;p P , P ∨p Q , P ∧ Q , A �B in P , A ⇒B in P , 
A ⇒ B in P , P\A, and P ⇒ A.

There are two terminal symbols in the language, nil and �, we need them to define the semantics of the language. Let 
us note that the products of a term in SPLA will be computed following some rules. The computation will finish when no 
further steps are allowed. This fact is represented by the nil symbol. We will introduce rules to compute a product, with 
this computation finishing when no further steps are required, a situation represented by nil. During the computation of 
an SPLAP term, we have to represent the situation in which a valid product of the term has been computed. This fact is 
represented by the � symbol.
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The operators A; P and Ap; P add the feature A to any product that can be obtained from P . The operator A; P indicates 
that A is mandatory while Ap; P indicates that A is optional and computed with probability p. There are two binary 
operators: P ∨p Q and P ∧ Q . The first one represents a probabilistic choice. It represents a point in the product line 
between two options. In this probabilistic framework, the choice is quantified with a probability p: the probability of 
choosing the left hand side is p and the probability of choosing the right hand side is 1 − p. The operator P ∧ Q is the 
conjunction, intuitively it combines the products of both subterms P and Q by accumulating the features.

Example 1. Let us consider the term P = A; �∨ 1
3
B; �. This term will produce two products: {A} with probability 1

3 and {B}
with probability 2

3 . Let us consider Q = C; D 1
5
; �. This term will produce two products: {C} with probability 4

5 and {C, D}
with probability 1

5 . Then P ∧ Q will produce the following products: {A, C} with probability 4
15 , {A, C, D} with probability 

1
15 , {B, C} with probability 8

15 , and {B, C, D} with probability 2
15 .

The constraints are easily represented in SPLAP . The operator A ⇒ B in P represents the require constraint in FODA. 
The operator A � B in P represents the exclusion constraint in FODA.

Example 2. The term A ⇒ B in A; � has only one valid product {A, B} with probability 1.
Let us consider P = A; (B; � ∨ 1

3
C; �). This term has two valid products: The first one {A, B} with probability 1

3 , and 

{A, C} with probability 2
3 .

If we add to the previous term the following constraint A � B in P , then this new term has only one {A, C} with
probability 2

3 . This term has probability 1
3 of producing nothing. �

The operator P ⇒ A is necessary to define the behavior of the A ⇒ B in P operator: when we compute the products of 
the term A ⇒ B in P , we have to take into account whether product A has been produced or not. In the case it has been 
produced, we have to annotate that we need to produce B in the future. The operator P ⇒ B is used for this purpose. The 
same happens with the operator P\B. When we compute the products of A �B in P , if the feature A is computed at some 
point, we annotate that B must not be included. The operator P\B indicates that product B is forbidden.

The rules in Fig. 2 define the behavior of SPLAP terms. These rules essentially coincide with the ones corresponding to 
SPLA [8] (with the modification introduced in [18]). We have adapted those rules in order to incorporate probabilities.

Definition 2. Let P , Q ∈ SPLAP two terms, A ∈F and a probability p ∈ (0, 1] we define the transition P A−−→p Q iff can be 
deduced in a finite number of steps from the rules in Fig. 2. �

Next we focus on the explanation of the role of probabilities. Rules [tick] and [feat] show the corresponding feature 
with probability 1. Rules [ofeat1] and [ofeat2] deal with the probabilistic optional feature. The feature can be chosen with 
probability p and can be rejected with probability 1 − p. Let us note that both probabilities are not null. Rules [cho1] and 
[cho2] define the behavior of the probabilistic choice operator. The left branch is selected with probability p and the right 
one with probability 1 − p. It is important to note that the rules for the conjunction operator, [con1], [con2], [con4] and 
[con5], equitably distribute the probability between both branches, that is, 1

2 . We have preferred to use a simple definition 
of this operator, but it is easy to replace it by a more involved version of a probabilistic conjunction operator [41]. It 
is important to note that Rule [con3] requires that the two branches of a conjunction to agree on the termination of a 
product. Figs. 3 to 5 contain some examples of the operational semantics.

We use multisets of transitions to consider different occurrences of the same transition. Thus, if a transition can be 
derived in several ways, then each derivation generates a different instance of this transition [42]. For example, let us 
consider the term P = A; � ∨ 1

2
A; �. If we were not careful, then we would have the transition P A−−→ 1

2
� only once, 

while we should have this transition twice. So, if a transition can be derived in several ways, then we consider that each 
derivation generates a different instance. In particular, we will later consider multisets of computations as well. We will use 
the delimiters � and � to denote multisets and � to denote the union of multisets.

The following result, whose proof is immediate, shows that successful termination leads to nil.

Lemma 1. Let P , Q ∈ SPLAP and p ∈R. We have P �−−→p Q if and only if Q = nil. �
Next we present some notions associated with the composition of consecutive transitions.

Definition 3. Let P , Q ∈ SPLAP . We write P
s=⇒ p Q if there exists a sequence of consecutive transitions

P = P0
a1−−→p1 P1

a2−−→p2 P2 · · · Pn−1
an−−→pn Pn = Q

where n ≥ 0, s = a1a2 · · ·an and p = p1 · p2 · · · · pn . We say that s is a trace of P .
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Fig. 2. SPLAP operational semantics.

Fig. 3. Examples of the operational semantics (1/3).

Let s ∈F∗ be a trace of P . We define the product 
s� ⊆ F as the set consisting of all features belonging to s.
Let P ∈ SPLAP . We define the set of probabilistic products of P , denoted by prodP (P ), as the set

prodP (P ) = {
(pr, p) | p > 0 ∧ p =

∑
�q | P

s�==⇒q Q ∧ 
s� = pr�
}

We define the total probability of P , denoted by TotProb(P ), as the value 
∑

� p | ∃pr : (pr, p) ∈ prodP (P )�. In addition, 
we define waste(P ) = 1 − TotProb(P ).
We say that P is equivalent to Q , written P ≡P Q iff prodP (P ) = prodP (Q ) �

From its definition, we obtain directly that ≡P is a equivalence relation. But it is difficult to prove other properties like 
congruence and the commutativity and associativity of the operator ∧ These properties can be obtained easily when the 
denotational semantics is studied in Section 3.2.
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Fig. 4. Examples of the operational semantics (2/3).

Fig. 5. Examples of the operational semantics (3/3).

Instead, the ∨p is not symmetric, which makes impossible for it to be commutative and associative. Nevertheless we can 
define a commutative n-ary operator: Let n ≥ 0 be a natural number, Pi ∈ SPLA for 1 ≤ i ≤ n, and pi ∈ (0, 1) for 1 ≤ i ≤ n
such that 1 = ∑n pi . Then we can define the operator 

∨n
(pi, Pi) whose operational semantics is given by the rule
i=1 i=1
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P j
A−−→q P ′

j∨n
i=1(pi, Pi)

A−−→p j ·q P ′
j

, 1 ≤ j ≤ n

This operator can be expressed in terms of our language, as the following proposition shows.

Proposition 1. Let n ≥ 0 be a natural number, Pi ∈ SPLA for 1 ≤ i ≤ n, pi ∈ (0, 1) for 1 ≤ i ≤ n such that 1 = ∑n
i=1 pi , and let

P = P1 ∨k1 ∨(P2 ∨k2 (. . . Pn−1 ∨kn−1 Pn)) where kl = pl

1 − ∑l−1
j=1 p j

For all 1 ≤ i ≤ n, A ∈F , q ∈ (0, 1], and P ′ ∈ SPLA, Pi
A−−→q P ′ iff P A−−→pi ·q P ′ .

Proof. The proof is in the Appendix A. �
The following result shows some properties, concerning probabilities, of the operational semantics. In particular, we have 

that the probability of (sequences of) transitions is greater than zero.

Lemma 2. Let P ∈ SPLAP , we have the following results.

1. If P A−−→p Q then p ∈ (0, 1]. If P s=⇒ p Q then p ∈ (0, 1].
2.

∑
� p | ∃A ∈F , Q ∈ SPLAP : P A−−→p Q � ∈ [0, 1].

3.
∑

� p | ∃s ∈F∗, Q ∈ SPLAP : P
s�==⇒ p Q � ∈ [0, 1].

4. TotProb(P ) ∈ [0, 1]. �
Next we prove an important property of our language: its consistency. We say that a non-probabilistic SPL model is 

consistent if it has products [8]. In our case, we can define consistency by having TotProb(P ) > 0. We will prove that a 
translation from our probabilistic framework into the non-probabilistic one keeps consistency in the expected way.

Definition 4. We define the translation function np : SPLAP �→ SPLA as follows:

np(P ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if P = �
nil if P = nil

A;np(P ) if P = A; P

A;np(P ) if P = A;p P

np(P ) ∨ np(Q ) if P ∨p Q

np(P ) ∧ np(Q ) if P ∧ Q

A⇒ B in np(P ) if A⇒ B in P

A� B in np(P ) if A� B in P

np(P ) ⇒ A if P ⇒ A

np(P )\A if P\A �
The proof of the following result is straightforward by taking into account that, if we discard probabilities, our operational 

semantics rules are the same as in [8]. Therefore, any sequence of transitions derived in the probabilistic model can be also 
derived in the non probabilistic one. In addition, by Lemma 2 we know that any derived trace in the probabilistic model 
has a non null probability.

Theorem 1. Let P , Q ∈ SPLAP . We have P
s=⇒ p Q if and only if np(P ) s=⇒ np(Q ). Moreover, we have pr ∈ prod(np(P )) if and 

only if there exists p > 0 such that (pr, p) ∈ prodP (P ). �
3.2. Denotational semantics

Next we define a denotational semantics for the terms of our language. The main characteristic of the semantic domain 
is that we consider products (set of features) with a probability such that the sum of all the probabilities associated with 
products belongs to the interval (0, 1]. First, we precisely define the members of the semantic domain.

Definition 5. We define the semantic domain M as the largest set M ⊆ P(P(F) × (0, 1])) such that if A ∈ M then the 
following conditions hold:
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– If (P , q) ∈ A and (P , r) ∈ A then q = r.
– 0 ≤ ∑

�q | ∃P : (P , q) ∈ A� ≤ 1.

Let M be a multiset with elements in the set P(F) × [0, 1]. We define the operator accum as follows:

accum(M) =
⎧⎨
⎩(P , p)

∣∣∣∣∣∣ p =
∑

(P ,q)∈M

q ∧ p > 0

⎫⎬
⎭ �

Even though the elements of the semantic domain are sets of pairs (product, probability), with at most one occurrence 
of a given product, we use multisets as auxiliary elements in our semantic functions. Then, the function accum(M) will 
flatten them to become sets. The following result is immediate.

Proposition 2. Let M be a multiset with elements in the set P(F) × [0, 1]. If 1 ≥ ∑
�q | (P , q) ∈ M � then accum(M) ∈M. �

Next we define the operators of the denotational semantics (called denotational operators). As we have said before, 
multisets meeting the conditions of the previous result appear when defining these operators. For instance, the prefix 
operator [ [A; ] ](M) should add feature A to any product in M . Let us suppose that M = {({B, A}, 12 ), ({B}, 12 )}. If we add A to 
the products of M then we obtain the product {A, B} twice, having probability 1

2 associated with each occurrence. So we 
need to apply the function accum to accumulate both probabilities and to obtain a single product with probability 1.

Definition 6. Let M, M1, M2 ∈ M, A, B ∈ F and p ∈ (0, 1]. For any operator appearing in Definition 1 we define its denota-
tional operator as follows:

– [ [nil] ]P = ∅

– [ [�] ]P = {(∅, 1)}
– [ [A; ·] ]P (M) = accum

(
�({A} ∪ P , p) | (P , p) ∈ M �

)
– [ [A;p ·] ]P (M) = accum

(
�(∅, 1 − p) � � � ({A} ∪ P , p · q) | (P , q) ∈ M �

)
– [ [· ∨p ·] ]P (M1, M2) = accum

(
�(P , p · q) | (P ,q) ∈ M1 � �
�(Q , (1 − p) · q) | (Q ,q) ∈ M2 �

)
– [ [· ∧ ·] ]P (M1, M2) = accum

(
�(P ∪ Q , p · q)| (P , p) ∈ M1, (Q , q) ∈ M2 �

)
– [ [A ⇒ B in ·] ]P (M) = accum

(
�
(

P , p
) | (P , p) ∈ M,A /∈ P � �

�
({B} ∪ P , p

) | (P , p) ∈ M,A ∈ P �

)
– [ [A � B in ·] ]P (M) = {(P , p) | (P , p) ∈ M,A /∈ P }∪

{(P , p) | (P , p) ∈ M,B /∈ P }
– [ [· ⇒ A] ]P (M) = [ [A; ·] ]P (M)

– [ [·\A] ]P (M) = {(P , p) | (P , p) ∈ M, A /∈ P } �
The denotational semantics for the prefix operator [ [A; ·] ]P (M) and the denotational semantics for the operator [ [A ⇒

B in ·] ]P (M) behave in the same way if the feature is added to the products. In the first case the feature A is mandatory 
so it will be added, and in the second case the feature B is required if the feature A is already included in the product.

It is easy to check that all the multisets appearing in the previous definition meet the conditions of Proposition 2. Thus, 
the operators are actually well defined. This is formalized in the following result.

Proposition 3. Let M, M1, M2 ∈M, p ∈ (0, 1] be a probability, and A, B ∈F be features. We have:

– [ [A; ·] ]P (M) ∈M
– [ [A;p ·] ]P (M) ∈M
– [ [· ∨p ·] ]P (M1, M2) ∈M
– [ [· ∧ ·] ]P (M1, M2) ∈M

– [ [A ⇒ B in ·] ]P (M) ∈M
– [ [A � B in ·] ]P (M) ∈M
– [ [· ⇒ A] ]P (M) ∈M
– [ [·\A] ]P (M) ∈M �

4. Equivalence between the operational and denotational semantics

We have defined two different semantics for our language: the products derived from the operational semantics and the 
products obtained from the denotational semantics. It is important that both semantics are consistent, so that we can chose 
the approach that suits better in any moment.
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Fig. 6. Operational semantics for the hiding operator.

Proposition 4. Let P , Q ∈ SPLAP be terms, A, B ∈F be features and q ∈ (0, 1), be a probability. We have the following results:

prodP (A; P ) = [[A; ·]]P (prodP (P )) (1)

prodP (A;q P ) = [[A;q ·]]P (prodP (P )) (2)

prodP (P ∨q Q ) = [[· ∨q ·]]P(
prodP (P ),prodP (Q )

)
(3)

prodP (P∧Q ) = [[· ∧ ·]]P(
prodP (P ),prodP (Q )

)
(4)

prodP (P ⇒ A) = [[· ⇒ A]]P (prodP (P )) (5)

prodP (P\A) = [[·\A]]P (prodP (P )) (6)

prodP (A⇒ B in P ) = [[A⇒ B in ·]]P (prodP (P )) (7)

prodP (A� B in P ) = [[A� B in ·]]P (prodP (P )) (8)

Proof. The full proof of this Proposition is in Appendix B. Each equality above is proved in a different Lemma: (1) is 
consequence of Lemma 3, (2) is consequence of Lemma 4, (3) is consequence of Lemma 6, (4) is consequence of Lemma 8, 
(5) is consequence of Lemma 9, (6) is consequence of Lemma 12, (7) is consequence of Lemma 11, and (8) is consequence 
of Lemma 12. �

The definition of the operator [ [· ∧ ·] ]P is clearly associative and commutative. Then, as consequence of the previous 
proposition, the semantics of the conjunction operator ∧ is associative and commutative.

Finally, we have the previously announced result. The proof, by structural induction on P , is easy from Proposition 4.

Theorem 2. Let P ∈ SPLAP be a term, pr ⊆F be a product, and p ∈ (0, 1] be a probability. We have that (pr, p) ∈ [ [P ] ]P if and only 
if (pr, p) ∈ prodP (P ). �
Theorem 3.

– Let P , Q ∈ SPLAP , then P ≡P Q iff [ [P ] ] = [ [Q ] ].
– ≡P is a congruence.

Proof. This is a direct consequence of Theorem 2. �
5. Hiding sets of features

The probability of a single feature in a software product line is a measure of the occurrences of this feature in the set 
of products. For instance, in case of testing, it is interesting to know the most frequent components to focus our analysis 
on these components. In order to compute the probability of a set of features, other features from the software product 
line are hidden. We hide features because it is usually not feasible to compute all the products of the software product line. 
However, we expect to achieve our goal if we restrict ourselves to a subset of features. Thus, non interesting features are 
transformed into a new feature, denoted by ⊥ /∈ F , and we consider the set F⊥ =F ∪ {⊥}.

We extend the set of operators with a new one: hiding a set of features in a term.

Definition 7. Let A ⊆ F be a subset of features and P ∈ SPLAP be a term. We have that P [A] denotes the hiding of the 
features in A for the term P . �

We need to define the semantics of the new operator. The operational semantics is given by the rules appearing in 
Fig. 6. In order to define the denotational semantics of the new operator, first we need an auxiliary function that hides 
some features of a given product.

Definition 8. Let pr ⊆ F be a product and A ⊆ F be a set of features. The hiding of the set A in pr, denoted by pr[A], is 
defined as follows:
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pr[A] = {A | A ∈ pr ∧ A /∈ A} ∪
{

{⊥} if pr ∩A �= ∅

∅ if pr ∩A = ∅

Analogously, for any sequence s ∈ F∗ we consider that s[A] denotes the trace produced from s after replacing all the 
occurrences of features belonging to A by the symbol ⊥ in s. �
Definition 9. Let M ∈M and A ⊆F . We define:

[[·[A]]]P (M) = accum
(

�(pr[A], p) | (pr, p) ∈ M �
) �

Finally, we have to prove that the operational semantics and the denotational semantics are consistent. The proof of the 
following result is an immediate consequence of Proposition 7 (see Appendix C).

Proposition 5. Let A ⊆F be a subset of features and P ∈ SPLAP be a term. We have prodP (P [A]) = [ [prodP (P )[A]] ]P .

Proof. The proof of this proposition is in Appendix C. �
As usual in process algebras, it would be desirable that the hiding operator is derived, that is, given a syntactic term, there 

exists a semantically equivalent term without occurrences of the hiding operator. The idea is to substitute any occurrence of 
the hidden actions by the symbol ⊥. However, it is necessary to take into account that we cannot hide actions that appear 
in the restriction operators and, therefore, these cases are not contemplated.

Proposition 6. Let P , Q ∈ SPLAP be terms, r ∈ (0, 1] be a probability, and A ⊆F be a set of hidden actions. We have the following 
results:

[[·[A]]]P ([[�]]P ) = [[�]]P

[[·[A]]]P ([[nil]]P ) = [[nil]]P

[[·[A]]]P ([[A; P ]]P ) =
{

[[⊥; (P [A])]]P if A ∈ A
[[A; (P [A])]]P if A /∈ A

[[·[A]]]P ([[A;r P ]]P ) =
{

[[⊥;r (P [A])]]P if A ∈ A
[[A;r (P [A])]]P if A /∈ A

[[·[A]]]P ([[P ∨P Q ]]P ) = [[(P [A]) ∨P (Q [A])]]P

[[·[A]]]P ([[P ∧ Q ]]P ) = [[(P [A]) ∧ (Q [A])]]P

If A,B /∈ A then [[·[A]]]P ([[A⇒ B in P ]]P ) = [[A⇒ B in (P [A])]]P

If A,B /∈ A then [[·[A]]]P ([[B� P in ]]P ) = [[A� B in (P [A])]]P

Proof. The proof is immediate applying the definitions and Proposition 5. �
6. Empirical study

In the field of SPLs analysis, the use of probabilistic methods carries two practical applications. The first one consists in 
calculating the probability of having a feature in a specific product. This allows us to efficiently assign resources by priori-
tizing those features with a high probability of being included into the SPL. The second application consists in estimating 
the testing coverage in the product line, which allows us to calculate those products that can be generated in the testing 
process.

The idea to compute the probability of each feature is to hide all the other features and then compute the resulting SPL. 
This approach is based on Proposition 5. The problem with that Proposition is that we cannot remove the features involved 
in restrictions (requirement or exclusion) associated with the feature in which we are interested. Hence, we need to add, to 
the non-hidden features, those that appear in a restriction associated with the original one.
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Example 3. Let us assume that we want to compute the probability of A in the term

B� C in C⇒ A in P

where P is a term without restrictions. Then we compute the probability of A in the term

B� C in C⇒ A in (Q [{A,B,C}])

This section presents the results obtained from an experimental study to show the applicability and scalability of our 
approach. In order to carry out this study, we have implemented a set of scripts to demonstrate the applicability of the 
probabilistic extension - of the denotational semantics - presented in this paper. The source code of the scripts used in this 
section is available at the main project site.1 In essence, we perform two experiments. The former focuses on measuring 
the performance of our proposed implementation for processing a feature model. This means, given a feature model (a 
SPLAP term), calculating the time to compute the probability of having each feature in the valid products set. The second 
experiment consists on analyzing the scalability of our proposed implementation. The idea is to study if there is a correlation 
between the number of features of each type and the processing time. The experiments have been executed in a computer 
with the following features: Intel(R) Xeon(R) Quad-Core CPU E5-2670 @ 2.60GHz, 64 GB of RAM memory and Centos 7 
Operating System.

The study described in this section seeks to answer the following questions:

– RQ1: Is it possible to translate current graphical representations of feature models to support probabilistic information?
– RQ2: Is it possible to extend SPLA in such a way that translates the probabilistic information from the graphical 

representation to a formal representation?
– RQ3: What is the impact of applying probabilistic analysis methods to current feature models like FODA?

6.1. Model analysis

Firstly, we have carried out an experiment to show the computing time required to calculate the probability of having 
each feature in the set of valid products. In order to run this experiment, a variability model (a SPLAP term) consisting 
of 3000 features has been used. This SPLAP term has been generated using BeTTy [19], in specific its web version.2 Fig. 7
depicts the parameters used in the feature models generator.

BeTTy generates feature models based on a set of pre-defined parameters. The meaning of these parameters focuses on 
how BeTTy randomly generates these models. In this case BeTTy requires 4 parameters, where the sum of the probabilities 
for these parameters must be 1, that is:

– The probability of having a mandatory feature.
– The probability of having an optional feature.
– The probability of having a feature in a choose-one relationship.
– The probability of having a feature in a conjunction relationship.

The values used for these parameters to generate the feature model are the following:

– The probability of having a mandatory feature is 0.2.
– The probability of having an optional feature is 0.3.
– The probability of having a feature in a choose-one relationship is 0.25.
– The probability of having a feature in a conjunction relationship is 0.25.

The idea of using this configuration is to have the same probability for the different relationships in the SPLAP term, 
that is, we use a probability of 0.25 for both the choose-one and conjunction relationships. Since optional features are more 
relevant from a probabilistic point of view, we use a probability of 0.3 for having optional features in the SPLAP term and 
a probability of 0.2 for having mandatory features. The sum of all probabilities must be 1. If no weight is configured, all 
features and relationships have a random weight, it being not possible to correlate the obtained results with our model anal-
ysis. Additionally, the percentage of cross-tree constraints is set to 10%, which is not related to the sum of the probabilities 
of the previous parameters.

Fig. 8 shows the obtained results from this experiment, where the x-axis depicts the ID of each generated feature and 
the y-axis represents the time required to calculate the probability of having the feature in a final product.

1 http://ccamacho .github .io /phd /resources /03 _splap .tar.
2 https://betty.services .governify.io/.

http://ccamacho.github.io/phd/resources/03_splap.tar
https://betty.services.governify.io/
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Fig. 7. BeTTy parameters.

Fig. 8. Computing time analysis for a SPLAP term consisting of 3000 features.

From the graphic presented in Fig. 8 we can see that giving the fact that each feature is computed independently, the 
computing time to calculate its probability depends on the feature position in the SPLAP term. Those features being lower 
in the model tree, will take more time in being computed.

We have generated 11 SPLAP terms. We can observe in Table 1 that the results are similar in each term. That is, most 
of the features require between 80 and 4599 milliseconds to be processed.
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Table 1
Computing time analysis table.

Execution Minimum Maximum Average Standard deviation

1 97 2475 758.8766 634.082
2 200 1950 612.8149 458.745
3 80 3201 895.4566 701.569
4 350 4054 975.4781 700.456
5 89 2115 1002.5135 596.598
6 236 1800 490.7506 399.927
7 409 2900 684.1667 650.287
8 360 3698 498.3847 710.136
9 90 4599 642.8489 684.993
10 150 2700 870.8184 688.013
11 84 2379 769.187 623.544

Fig. 9. Probabilistic analysis for a 3000 SPLAP term.

Fig. 10. Probabilistic histogram for processing a 3000 SPLAP term.

Fig. 9 shows the probability of each feature - in the analyzed SPLAP term - to be part of a final product, where the 
x-axis represents the feature ID and the y-axis represents the probability. Fig. 10 represents a histogram of the calculated 
probabilities for a better readability of the results. This chart clearly shows that there exist different groups of features 
having a similar probability. In this case, the probability of the major part of the features ranges between 0.5 and 1. Thus, 
there are 235 features with a probability equal to 0.90 of being in a final product. As a conclusion, this analysis might allow 



C. Camacho et al. / Journal of Logical and Algebraic Methods in Programming 107 (2019) 54–78 67
Table 2
Configuration of the scalability experiments.

Configuration Mandatory Optional Choose-one Conjunction

1 0.69 0.15 0.15 0.01
2 0.5 0.15 0.15 0.2
3 0.2 0.15 0.15 0.5

us to establish that by testing only the 7.83% of the software product line components (235 features), we can ensure that 
those components will be commonly distributed in the 90% of the products from the referenced SPLAP term.

It is important to differentiate the probabilities defined in BeTTy, which are used to generate a SPLAP term, and the 
probability - calculated from the term - to have a feature in a final product.

For instance, if we configure BeTTy to generate a SPLAP term using a probability of 0.2 for having a mandatory feature, 
that means that 20% of the generated features are mandatory. However, that does not imply that these features be part of 
the 20% of the generated products, because the probability of having a feature in a final product depends on where this 
feature is placed in the term. If a given mandatory feature is placed in a choose-one relationship, it is possible that the 
other branch is used to generate the final product, discarding the mandatory feature. Hence, we can not assume that these 
20% of the features will have a probability of 1 for being installed in the products.

6.2. Performance analysis

Secondly, an evaluation to analyze the scalability of our approach have been carried out. We are interested in investi-
gating both the execution time and the amount of memory required for processing a SPLAP term when the number of 
features increases. Hence, we use different configurations for creating a wide spectrum of SPLAP terms, which are ran-
domly generated, using a different number of features that ranges from 1.000 to 10.000 (in increments of one thousand per 
experiment).

Specifically for each case, that is, given a configuration and a number of features, a SPLAP term is randomly generated 
30 times. Additionally, for each term, 100 features are randomly selected and, for each one, both the processing time and 
memory required to calculate its probability are analyzed.

Table 2 shows the configurations used to generate the SPLAP terms for this part of the empirical study, where each 
configuration represents the set of probabilities chosen for each operator across the three experiments, that is, Mandatory
represents the probability of having a mandatory feature, Optional represents the probability of having an optional feature, 
Choose-one represents the probability of having a feature in a choose-one relation and Conjunction represents the probability 
of having a feature in a conjunction relation.

In this experiment, we have set the same values for the probabilities of the Optional and Choose-one features. Hence, 
these will remain the same across all the experiments and, thus, they should not interfere in the obtained results. We start 
with a low probability of having a Conjunction relationship in the SPLAP term. In this case, for the first experiment, we 
use a probability of 0.01, which is increased in the next configurations to 0.2 and 0.5, respectively. This idea is to show the 
impact of the Conjunction relationship in the time and memory required for processing the SPLAP terms.

For each configuration, we have generated 30 SPLAP terms per number of features, that is, we generate 30 different 
SPLAP terms containing 1000 features, 30 different SPLAP terms containing 2000 features, and so on until 10.000 features.

Fig. 11 and Fig. 12 show the execution time and the required amount of memory, respectively, for processing the SPLAP
terms generated using Configuration 1. In these terms, only 1% of the features have a conjunction relation. In general, the 
processing time when the number of features increases is linear. Only in few cases, where the number of features ranges 
from 5000 to 8000, the results provide anomalous values. This is mainly caused by the random nature of the generated 
terms (30 for each case). On the contrary, the memory usage depicts that there are several groups where the memory usage 
remains constant, one group of terms containing between 3000 and 5000 features and other group of terms containing 
between 7000 and 10,000 features. In summary, our implementation shows good scalability results for processing the terms 
generated using Configuration 1: it requires, in the worst case scenario, 215 ms and 0.32 GB of RAM to process the terms.

Fig. 13 and Fig. 14 show the results for analyzing the generated terms using Configuration 2. It is important to remark that 
20% of the features in the generated terms have a conjunction relation. In this case, both the execution time and memory 
usage for processing a term when the number of features increases are exponential. These charts clearly show a turning 
point when the term reaches 6000 features and, therefore, the required processing time and memory are significantly lower 
for those terms that do not reach 6000 features. However, the requirements to process the term in the worst case scenario, 
that is, using a term containing 10,000 features, are 300 sec. and 3.84 GB of RAM memory, which are acceptable.

Fig. 15 and Fig. 16 show the results for processing the terms generated using Configuration 3. In this case, half of the 
features in the term have a conjunction relation. Similarly to the previous experiment, these charts show that both the 
execution time and the memory usage for processing a term when the number of features increases are exponential. In the 
obtained results we can observe the same turning point detected in the previous terms generated using Configuration 2, that 
is, when the term reaches 6000 features. Terms processing requirements, that is, execution time and memory usage, grow 
much faster for these terms than for those based on previous configurations. Also, it is important to notice that the terms 
containing 9000 and 10,000 features cannot be processed due to memory limitations.
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Fig. 11. Execution time for processing the SPLAP terms generated using Configuration 1.

Fig. 12. Memory usage for processing the SPLAP terms generated using Configuration 1.

6.3. Discussion of the results

In this section we discuss the results obtained from the empirical study. Specifically, we are interested in analyzing the 
performance of the implementation of the probabilistic extension. Also, we provide the answers for the research questions.

The experiments carried out in Section 6.2 use SPLAP terms containing a maximum of 10000 features. In general, 
these results show that increasing the number of features having a conjunction relation has a direct impact on the overall 
performance. In fact, increasing the number of features having a conjunction relation generates a combinatorial explosion 
that hampers the processing of the SPLAP terms. First, the execution time to completely process a term significantly grows. 
Second, large amounts of memory are required to store those combinations. In some cases, using large terms with a high 
percentage of features having a conjunction relation may cause a bottleneck in the memory system. In fact, terms generated 
using Configuration 3 with 9000 and 10,000 features cannot be processed using 64 GB of RAM. In this case, the worst case 
scenario, which generates a SPLAP term where the 50% of the features are placed in a conjunction relationship, requires 
approximately 500 seconds.

Following, we provide the answers to the research questions.
RQ1: Is it possible to translate current graphical representations of feature models to support probabilistic information?
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Fig. 13. Execution time for processing SPLAP terms generated using Configuration 2.

Fig. 14. Memory usage for processing SPLAP terms generated using Configuration 2.

In order to answer this question we have implemented the denotational semantic of the probabilistic extension. Since our 
framework is based on FODA, we can state that the answer is yes, it is possible to translate current graphical representations 
of feature models, like FODA, to represent and support probabilistic information.

RQ2: Is it possible to extend SPLA in such a way that translates the probabilistic information from the graphical repre-
sentation to a formal representation?

General use models have been proposed to model variability in software product lines [29,30] and, specifically, for 
feature-oriented systems [26,39]. Thus, all previous work focuses on generic representations. However, this work is based 
on including probabilistic information to the well-known feature model FODA. Based on our previous results [8,18], together 
with the results presented in this work, we can state that state it is possible to describe a formal framework that translates 
the current graphical definitions of feature models into to a probabilistic formal representation.

RQ3: What is the impact of applying probabilistic analysis methods to current feature models like FODA?
In order to answer this question we carried out some experiments using our implementation of the probabilistic exten-

sion. Since the probabilistic extension focuses on hiding those features that do not affect the processing of the probability 
of given feature for being part of a valid product, the required time for processing the SPLAP term is considerably reduced. 
Hence, the implementation of the probabilistic extension provides a greater scalability than our previous implementations 
of the denotational semantic SPLA [8] and the cost extension SPLAC [18] and, therefore, large terms containing an elevated 
number of features are processed more efficiently. Although these previous implementations also allow to calculate all the 
valid products of a term, the required processing time to accomplish this task is elevated, making the processing of large 
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Fig. 15. Execution time for processing SPLAP terms generated using configuration 3.

Fig. 16. Memory usage for processing SPLAP terms generated using configuration 3.

terms unfeasible. Alternatively, the implementation of the denotational semantic SPLA [8] also calculates the satisfactibil-
ity of a term, that is, checks if the term contains, at least, a valid product. In this case, this implementation requires less 
computing time at the cost of providing a simpler result, which contains less information than the one generated by the 
probabilistic extension.

7. Threats to validity

This section presents the threats to validity of our empirical study.

7.1. Internal threats

Internal validity refers to the fact that our findings truly represent a cause-and-effect relationship and, therefore, the 
internal validity of our study focuses on the implementation of our experiments.

The probabilistic extension - of the denotational semantics - presented in this paper has been implemented by two 
experts. The source code has been studied and checked by two additional and advanced programmers. Although we have 
performed a careful testing and analysis process of the source code, we cannot assure the total absence of errors. This source 
code is available at http://ccamacho .github .io /phd /resources /03 _splap .tar

http://ccamacho.github.io/phd/resources/03_splap.tar
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The feature models used in the experiments have been generated by using BeTTy [19], which is a widely used tool in 
the scientific community. Thus, we assume this tool correct to carry out the experiments.

Other issues might arise due to the random nature of the generated feature models. In order to mitigate this issue, a 
statistical analysis have been performed to study the variability of the results, where 11 different features models have been 
generated. In this case, all the generated feature models provide similar performance results.

7.2. External threats

External validity concerns the extent to which the results of a study can be generalized.
We have used 4 different configurations to generate feature models in our empirical study (1 for Section 6.1 and 3 for 

Section 6.2). Also, for each configuration we have generated 11 different models - per number of features - for Section 6.1
and 30 for Section 6.2. In essence, we are interested in investigating the overall performance of our implementation. Since 
features involved in a Conjunction relationship require more computing time to be processed, the idea is to increase the 
probability of having a Conjunction relationship in the models, like it is described in Table 2. Hence, although we believe 
that these models are representative for our empirical study, we cannot guarantee that the same results are obtained for 
other scenarios.

7.3. Construct threats

Construct validity concerns whether the used measures are representative or not.
We measured the overall performance of our approach based on the execution time and memory consumption, which 

are widely used in the community. All the experiments have been carried out using the same computing node, which is 
described in Section 6.

8. Conclusions

We have presented a probabilistic extension of our formal framework to specify and analyze SPLs. The main goal of 
this proposal is to alleviate the combinatorial explosion issue, where a vast number of combinations are generated by 
some of the algebra operators, that making unpractical to process the entire SPL. By including probabilistic information 
in our process algebra, we are able to generate significant information for determining the probability of a given feature 
to be present in a valid product. We have provided two semantic frameworks for our language and have proved that 
they identify the same processes. In order to show the applicability of our approach, a tool containing the implementation 
of the denotational semantics for our probabilistic extension has been developed. This tool has been used to conduct an 
experimental study. The results of this study show that, using our approach, it is possible to compute the probability of 
each feature in the SPL to be present in a valid product. Thus, the testing process can focus on those features having a high 
probability of being included in a product.

We have two main lines for future work. First, it is important to develop mechanisms allowing us to simplify and/or 
optimize terms based on the results of the probabilistic analysis. In addition, we plan to find practical use cases to show 
the usefulness of having a probabilistic extension for SPLs.

Also it is interesting the future integration’s of our formal framework to existing tooling frameworks like ProFeat [39]
and probabilistic model checkers like PRISM [40].

Finally, a significant line of research could be the integration of research on SPL with work deadlock avoidance/analysis 
[43–48], so to scale the analysis from single systems to entire software families.
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Appendix A. Proof of Proposition 1

Proof of Proposition 1. First of all, let us observe that kn is not defined above. In the rest of the proof let us define kn = 1. 
From the definition of P we obtain that P A−−→ p P ′ iff there is 1 ≤ i ≤ n and q ∈ (0, 1] such that Pi

A−−→q P ′ and p =
q · ki · ∏i−1

j=1(1 − k j). Then, it is enough to prove that pi = ki · ∏i−1
j=1(1 − k j). Or equivalently

ki = pi∏i−1
j=1(1 − k j)

Then we need to prove 
∏i−1

j=1(1 − k j) = 1 − ∑i−1
j=1 p j . Let us proceed by induction on i.

Base case. If i = 1 we obtain 
∏0

j=1(1 − k j) = 1 and 
∑0

j=1 p j = 0.
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Inductive case. Let us assume i > 1. By induction hypothesis we obtain 
∏i−2

j=1(1 − k j) = 1 − ∑i−2
j=1 p j . By definition ki−1 =

pi−1

1−∑i−2
j=1 p j

. Therefore

i−1∏
j=1

(1 − k j) =

(1 − ki−1) ·
i−2∏
j=1

(1 − k j) =
(

1 − pi−1

1 − ∑i−2
j=1 p j

)
·
⎛
⎝1 −

i−2∑
j=1

p j

⎞
⎠ =

(
1 − ∑i−2

j=1 p j − pi−1

1 − ∑i−2
j=1 p j

)
·
⎛
⎝1 −

i−2∑
j=1

p j

⎞
⎠ =

(
1 − ∑i−1

j=1 p j

1 − ∑i−2
j=1 p j

)
·
⎛
⎝1 −

i−2∑
j=1

p j

⎞
⎠ =

1 −
i−1∑
j=1

p j �

Appendix B. Results for the proof of Proposition 4

Lemma 3. Let P ∈ SPLAP and A ∈F , then (pr, p) ∈ prodP (A; P ) if and only if

p =
∑

�r | (pr′, r) ∈ prodP (P ) ∧ pr′ ∪ {A} = pr�

Proof. The other transition of A; P is A; P A−−→1 Q . Then A; P s=⇒ p P if and only if

A; P A−−→1 P
s=⇒ p Q ∧ s = A · s′

then

p =
∑

�r | A; P
s�==⇒ p nil ∧ 
s� = pr � =∑

�r | A; P A−−→1 P
s′�===⇒ r nil ∧ 
A · s′� = pr�∑

�r | P
s′�===⇒ r nil ∧ {A} ∪ 
s′� = pr�∑

�r | (pr′, r) ∈ prodP (P ) ∧ {A} ∪ pr′ = pr � �
Lemma 4. Let P ∈ SPLAP , A ∈F and q ∈ (0, 1), then (pr, p) ∈ prodP (A;q P ) if and only if (pr, p) = (∅, 1 − q) or

p = q ·
∑

{r | (pr′, r) ∈ prodP (P ) ∧ pr′ ∪ {A} = pr}

Proof. There exist two transitions to A;q P : A;q P A−−→q P and A;q P �−−→1−q nil. So forth if A;q P
s=⇒ r Q then

– s =� and r = 1 − q, or
– s = A · s′ , P

s=⇒ r′ Q , and r = q · r′ .

So, if pr = 
A · s′� then pr �= ∅. So then (∅, 1 − q) ∈ prodP (A;q P ). Now suppose pr �= ∅, then (pr, p) ∈ prodP (A;q P ) if 
and only if

p =
∑

�r | A;q P
s�==⇒ nil ∧ 
s� = pr� =∑

�r | A;q P A−−→q P
s′�===⇒ r′ nil ∧ 
A · s′� = pr ∧ r = q · r′� =∑

�r | P
s′�===⇒ r′ nil ∧ {A} ∪ 
s′� = pr ∧ r = q · r′� =∑

�r | (pr′, r′) ∈ prodP (P ) ∧ {A} ∪ pr′ = pr ∧ r = q · r′� =
q ·

∑
�r′ | (pr′, r′) ∈ prodP (P ) ∧ {A} ∪ pr′ = pr� �
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Lemma 5. Let P , Q ∈ SPLAP and q ∈ (0, 1), then P ∨q Q
s=⇒ r R if and only if

– P
s=⇒ r′ R y r = q · r′ , o

– Q
s=⇒ r′ R y r = (1 − q) · r′

Proof. This lemma is a consequence of rules [cho1] and [cho2] from the operational semantics. �
Lemma 6. Let P , Q ∈ SPLAP and q ∈ (0, 1), then (pr, p) ∈ prodP (P ∨q Q ) if and only if

p =
(

q ·
∑

{r | (pr, r) ∈ prodP (P )}
)

+
(
(1 − q) ·

∑
{r | (pr, r) ∈ prodP (Q )}

)

Proof. (pr, p) ∈ prodP (P ∨q Q ) if and only if

p =
∑

�r | P ∨q Q
s�==⇒ r nil� =∑

�r | (P
s�==⇒ r′ nil ∧ r = q · r′) ∨ (Q

s�==⇒ r′ nil ∧ r = (1 − q) · r′)� =∑
�r | P

s�==⇒ r′ nil ∧ r = q · r′ � +
∑

�r | Q
s�==⇒ r′ nil ∧ r = (1 − q) · r′� =

q ·
∑

�r | P
s�==⇒ r nil � +(1 − q) ·

∑
�r | Q

s�==⇒ r nil� =
q ·

∑
�r | (pr, r) ∈ prodP (P ) � +(1 − q) ·

∑
�r | (pr, r) ∈ prodP (Q )� �

Definition 10. Let P ∈ SPLAP . We define the height of the syntactic tree of P , written h(P ) as follows:

h(nil) = 0

h(�) = 1

h(A; P ), h(A;p P ),

h(A� B in P ), h(P\A), = 1 + h(P )

h(A⇒ B in P ), h(P ⇒ A)

h(P ∨p Q ), h(P ∧ Q ) = 1 = max(h(P ),h(Q )) �
Lemma 7. Let P , P ′ ∈ SPLAP , A ∈F , and p ∈ (0, 1]. If P A−−→ p P ′ then h(P ′) < h(P ).

Proof. The proof is done easily by structural induction. �
Lemma 8. Let P , Q ∈ SPLAP , pr ⊆F be a product, and p ∈ (0, 1), then (pr, p) ∈ prodP (P ∧ Q ) iff

p =
∑

�r | ∃(pr1, p1) ∈ prodP (Q ), (pr2, p2) ∈ prodP (Q ) : pr = pr1 ∪ pr2, r = p1 · p2 �

Proof. The proof is made by induction on h(P ) + h(Q ). First let us consider the base case h(P ) + h(Q ) = 0, that is P , Q ∈
{nil, �}. If P = nil (respectively Q = nil) then P ∧ Q has no products. If P = Q � then

prodP (P ) = prodP (Q ) = prodP (P∧Q ) = {(0,1)}
from with the result are immediate from the definitions.

So let assume the inductive case where |pr| ≥ 1. In this case we obtain (pr, p) ∈ prodP (P∧Q ) (by definition) iff

p =
∑

�r | P ∧ Q
s�==⇒ r nil, pr = 
s�� (1)

If pr =∅, the only possible transition for P ∧ Q is the one derived from [con3]. Then we obtain easily the result:

p =
∑

�r | P ∧ Q
�==⇒ r nil� =∑

�r1 · r2 | P
�==⇒ r1 nil, Q

�==⇒ r2 nil� =∑
�r1 · r2 | (∅, r1) ∈ prodP (P ), (∅, r2) ∈ prodP (Q )�
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If pr �= ∅, we can split the previous sum according the first transition of P ∧ Q according to rules [con1], [con2], [con4], 
and [con5]. Since rules [con1] and [con4] are symmetric to [con2] and [con5], we only show the corresponding transitions 
to the first two rules:

(1) =
∑

�
1

2
· r1 · r2 | P A−−→ r1 P ′,

P ′ ∧ Q
s′�===⇒ r2 nil, pr = {A} ∪ 
s′� � +∑

�
1

2
· r1 · r2 · r3 | P A−−→ r1 P ′, Q �−−→ r2 nil,

P ′ s′�===⇒ r3 nil, pr = {A} ∪ 
s′� � +
term corresponding rule [con2] + term corresponding rule [con5]

(2)

Applying the definitions and grouping traces giving the same product, the previous term can be transformed as follows

(2) =
∑

�
1

2
· r1 · r2 | P A−−→ r1 P ′,

(pr′, r2) ∈ prodP (P ′ ∧ Q ), pr = {A} ∪ pr′ � +∑
�

1

2
· r1 · r2 · r3 | P A−−→ r1 P ′, (pr′, r3) ∈ prodP (P ′),

(∅, r2) ∈ prodP (Q ), pr = {A} ∪ pr′ � +
term corresponding rule [con2] + term corresponding rule [con5]

(3)

Now we can apply induction hypothesis to the first term of the previous sum (and the third that is symmetric).

(3) =
∑

�
1

2
· r1 · r2 · r3 | P A−−→ r1 P ′, (pr′, r2) ∈ prodP (P ′),

(pr′′, r3) ∈ prodP (Q ), pr = {A} ∪ pr′ ∪ pr′′ � +∑
�

1

2
· r1 · r2 · r3 | P A−−→ r1 P ′, (∅, r2) ∈ prodP (Q ),

(pr′, r3) ∈ prodP (P ′), pr = {A} ∪ pr′ � +
term corresponding rule [con2] + term corresponding rule [con5]

(4)

Now let us consider the following set

Q = {(pr′, r) | (pr′, r) ∈ prodP (Q ), ∃P ′ ∈ SPLAP ,A ∈ F, pr′ ⊆ F, r1, r2 ∈ (0,1] :
P A−−→ r1 P ′, (pr′′, r2) ∈ prod(P ′), pr = {A} ∪ pr′ ∪ pr′′}

All pairs in Q appear in the first term of Equation (4). So we can apply the distributive property to reorganize that term 
obtaining

(4) = 1

2

∑
(pr′,r)∈Q

r ·
∑

�r1 · r2 | P A−−→ r1 P ′, (pr′, r2) ∈ prodP (P ′),

pr = {A} ∪ pr′ ∪ pr′′ � +
1

2
·
∑

�r1 · r2 · r3 | P A−−→ r1 P ′, (∅, r2) ∈ prodP (Q ),

(pr′, r3) ∈ prodP (P ′), pr = {A} ∪ pr′ � +
term corresponding rule [con2] + term corresponding rule [con5]

(5)

If the empty product is not a product of Q the second term of the previous sum may disappear. Otherwise there exists 
r ∈ (0, 1] such that (∅, r) ∈ prodP (Q ). By definition, (∅, r) ∈ Q, so we remove the empty set from the first term and we 
obtain:
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(5) = 1

2

∑
(pr′,r)∈Q,pr′ �=∅

r ·
∑

�r1 · r2 | P A−−→ r1 P ′,

(pr′′, r2) ∈ prodP (P ′), pr = {A} ∪ pr′ ∪ pr′′ � +
1

2
·
∑

�r1 · r2 · r3 | P A−−→ r1 P ′, (∅, r2) ∈ prodP (Q ),

(pr′, r3) ∈ prodP (P ′), pr = {A} ∪ pr′ � +
1

2
·
∑

�r1 · r2 · r3 | P A−−→ r1 P ′, (∅, r2) ∈ prodP (Q ),

(pr′, r3) ∈ prodP (P ′), pr = {A} ∪ pr′ � +
term corresponding rule [con2] + term corresponding rule [con5]

(6)

Since the two last terms are identical can be added. Then, grouping the elements with the same product in the first, we 
obtain definition we obtain

(6) = 1

2

∑
(pr,r)∈Q,pr′ �=∅

r ·
∑

�r′ | (pr′, r′) ∈ prodP (P ), pr′ �= ∅,

pr = pr ∪ pr′ � +∑
�r1 · r2 | (pr, r1) ∈ prod(P ), pr �=∅, (∅, r2) ∈ prodP (Q ) � +

term corresponding rule [con2] + term corresponding rule [con5]

(7)

Rewriting, taking into account the definition of Q the previous equation we obtain

(7) = 1

2

∑
�r1 · r2 | (pr1, r1) ∈ prodP (Q ), pr1 �= ∅,

(pr2, p2) ∈ prodP (P ), pr2 �=∅, pr = pr1 ∪ pr2 � +∑
�r1 · r2 | (pr, r1) ∈ prodP (P ), pr �= ∅, (∅, r2) ∈ prodP (Q ) � +

term corresponding rule [con2] + term corresponding rule [con5]

(8)

Then adding the symmetrical terms, and having into account that pr �=, we obtain

(8) =
∑

�r1 · r2 | (pr1, r1) ∈ prodP (Q ), pr1 �= ∅,

(pr2, p2) ∈ prodP (P ), pr2 �= ∅, pr = pr1 ∪ pr2 � +∑
�r1 · r2 | (pr, r1) ∈ prodP (P ), (∅, r2) ∈ prodP (Q ) � +∑
�r1 · r2 | (pr, r1) ∈ prodP (Q ), (∅, r2) ∈ prodP (P ) � +

(9)

Finally we can include the two last terms into the first one having into account that pr �= ∅.

(9) =
∑

�r1 · r2 | (pr1, r1) ∈ prodP (Q ),

(pr2, p2) ∈ prodP (P ), pr = pr1 ∪ pr2 � � (10)

Since the two last terms are identical can be added. Since the two last terms are identical can be added and by definition 
we obtain ed and by definition we obtain

Lemma 9. Let P ∈ SPLAP , A ∈F and P s�==⇒ p nil.

1. A ∈ s if and only if P ⇒ A s�==⇒ p nil.

2. A /∈ s if and only if P ⇒ A sA�===⇒ p nil.

Proof. In both cases the proof is made by induction of the length of s. �
Lemma 10. Let P ∈ SPLAP , A ∈F , s ∈F∗ and p ∈ (0, 1). P s�==⇒ p nil, if and only if A\P s�==⇒ p nil and A /∈ s.

Proof. The proof is simply by induction on the length of s. �
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Lemma 11. Let P ∈ SPLAP , A, B ∈F , s ∈F∗ and p ∈ (0, 1). Then P s�==⇒ p nil if and only if A ⇒B in P
s′�===⇒ p nil and s′ is in 

the form: A /∈ s and s′ = s, B ∈ s and s′ = s, or A ∈ s, B /∈ s and s′ = s · B.

Proof. By induction of the length of s.

|s| = 0 In this case P �−−→p nil. We obtain the result applying the rule [req3].
|s| > 0 Now we can distinguish three cases depending on the first feature of s:

s = As1. In this case there exist p1, q ∈ (0, 1) such that P A−−→p1 P1
s1�===⇒q nil. When applying the rule [req2]

we obtain A ⇒ B in P A−−→p1 P1 ⇒ B. We obtain the result by applying the Lemma 9.

s = Bs1. In this case there exist p1, q ∈ (0, 1) such that P A−−→p1 P1
s1�===⇒q nil. When applying the rule [req2]

we obtain A ⇒ B in P B−−→p1 P1 ⇒ A. We obtain the result by applying the Lemma 9.

s = Cs1 with C �= A and C �= A. In this case there exist p1, q ∈ (0, 1) such that P C−−→ p1 P1
s1�===⇒q nil. When 

applying the rule [req1], we obtain A ⇒ B in P C−−→ p1 A ⇒ B in P1, and then the result by applying 
the inductive hypothesis over s1. �

Lemma 12. Let P ∈ SPLAP , A, B ∈ F , s ∈ F∗ and p ∈ (0, 1). Then P s�==⇒ p nil if and only if A � B in P
s�==⇒ p nil, A /∈ s and 

B /∈ s.

Proof. By the induction on the length of s.

|s| = 0 In this case P �−−→p nil. We obtain the result by applying the rule [excl4].
|s| > 0 Now it is possible to distinguish three cases depending on the first feature of s:

s = As1. In this case there exist p1, q ∈ (0, 1) such that P A−−→p1 P1
s1�===⇒q nil. When applying rule [req2] we 

obtain A ⇒ B in P A−−→p1 P1\B. Now based on Lemma 9,

– B ∈ s1 if and only if P1 ⇒ B 
s1·�===⇒q nil.

– B /∈ s1 if and only if P1 ⇒ B 
s1B�===⇒q nil.

s = Cs1 with C �= A. In this case there exist p1, q ∈ (0, 1) such that P C−−→ p1 P1
s1�===⇒q nil. When applying 

rule [req1], we obtain A ⇒ B in P C−−→ p1 A ⇒ B in P1, and then the result is obtained by applying 
the inductive hypothesis over s1. �

Appendix C. Proof of Proposition 5

Proposition 7. P [A] s=⇒ r Q [A] if and only if r = ∑
� p | P s′==⇒ p Q , s = s′[A]�

Proof. The proof is achieved by induction over the length of the trace s. If the length is zero the result is trivial. Then we 
suppose that s = A · s1. If A = ⊥ then any transition P [A] s=⇒ p Q [A] can be divided in transitions, possibly more than one, 
for example.

P [A] ⊥−−→r1 P1[A] s1==⇒ r2 Q

then we have

r =
∑

� p | P [A] s=⇒ p Q � =
∑

�r1 · r2 | P [A] ⊥−−→ r1 P1[A] s1==⇒ r2 Q � =∑
�r′

1 · r2 | P [A] B−−→ r′
1

P ′
1[A] s1==⇒ r2 Q , B ∈ A�

Now for each r′
1, we can apply the induction hypothesis to each of the transitions P ′

1[A] s1==⇒ r2 Q to obtain r2 =∑
�r2′ | P1

s′1==⇒ Q , s1 = s′ [A]�. Continuing the last equation:
1
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∑
�r′

1 · r2 | P [A] B−−→ r′
1

P ′
1[A] s1==⇒ r2 Q , B ∈ A� =

∑
�r′

1 · r2′ | P [A] B−−→ r′
1

P ′
1

s′1==⇒ r2′ Q , B ∈ A. s1 = s′
1[A]� =

∑
�r1 · r2′ | P [A] ⊥−−→ r1 P1

s′1==⇒ r2′ Q , B ∈ A. s1 = s′
1[A]� =∑

�r | P
s′==⇒ r Q , s = s′[A]�

The case A /∈A is similar to the last one: we just skip the step from B to ⊥. �
Proof of Proposition 5. (pr, p) ∈ prodP (P [A]) if and only if

p =
∑

�r | P [A] s�==⇒ r P ′[A]. pr = 
s�� =∑
�r | P

s′�===⇒ r P ′, s = s′[A], pr = 
s�� =∑
�r | P

s′�===⇒ r P ′, s = pr[A]� =∑
�r | (pr′, r) ∈ prodP (P ), pr′ = pr[A]� =

So, (pr, p) ∈ prodP (P [A]) if and only if (pr, p) ∈ [ [(prodP (P ))[A]] ]P . �
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